cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285165 Triangle read by rows: T(n,k) is the number of c-nets with n-k inner vertices and k outer vertices, 3 <= n, 2 <= k <= n-1.

Original entry on oeis.org

1, 1, 1, 7, 6, 1, 73, 56, 16, 1, 879, 640, 208, 30, 1, 11713, 8256, 2848, 560, 48, 1, 167423, 115456, 41216, 9440, 1240, 70, 1, 2519937, 1710592, 624384, 156592, 25864, 2408, 96, 1, 39458047, 26468352, 9812992, 2613664, 496944, 61712, 4256, 126, 1, 637446145, 423641088, 158883840, 44169600, 9234368, 1377600, 132480, 7008, 160, 1, 10561615871, 6966960128, 2636197888, 756712960, 169378560, 28663040, 3430528, 261648, 10920, 198, 1
Offset: 3

Views

Author

Gheorghe Coserea, Apr 12 2017

Keywords

Examples

			Triangle starts:
n\k  [2]       [3]       [4]      [5]      [6]     [7]    [8]   [9]  [10]
[3]  1;
[4]  1,        1;
[5]  7,        6,        1;
[6]  73,       56,       16,      1;
[7]  879,      640,      208,     30,      1;
[8]  11713,    8256,     2848,    560,     48,     1
[9]  167423,   115456,   41216,   9440,    1240,   70,    1;
[10] 2519937,  1710592,  624384,  156592,  25864,  2408,  96,   1;
[11] 39458047, 26468352, 9812992, 2613664, 496944, 61712, 4256, 126, 1;
[12] ...
		

Crossrefs

Cf. A290326.
Columns k=2-9 give: A106651(k=2), A285166(k=3), A285167(k=4), A285168(k=5), A285169(k=6), A285170(k=7), A285171(k=8), A285172(k=9).

Programs

  • PARI
    x='x; y='y;
    system("wget http://oeis.org/A106651/a106651.txt");
    Fy = read("a106651.txt");
    A106651_ser(N) = {
      my(y0 = 1 + O(x^N), y1=0, n=1);
      while(n++,
        y1 = y0 - subst(Fy, y, y0)/subst(deriv(Fy, y), y, y0);
        if (y1 == y0, break()); y0 = y1);
      y0;
    };
    z='z; t='t; u='u; c0='c0;
    r1 = 2*t*u + 2*t^2*u + 2*t*u^2 + 2*t^2*u^2;
    r2 = 4*t^2 + 4*t^3 + 4*t^2*u + 4*t^3*u;
    r3 = -4*t^2 - 4*t^3 - 2*t*u - 6*t^2*u - 4*t^3*u - 2*t*u^2 - 2*t^2*u^2;
    r4 = 2*t + 2*t^2 + 4*t^3 - u + t*u + 4*t^3*u + u^2 + t*u^2 - 2*t^2*u^2;
    r5 = -2*t - 2*t^2 - 4*t^3 - 4*t*u - 2*t^2*u - 4*t^3*u + 2*t^2*u^2;
    r6 = u + 2*t*u + 2*t^2*u - t*u^2;
    Fz = r1*z^2 + (r3*c0 + r4)*z + r2*c0^2 + r5*c0 + r6;
    seq(N) = {
      N += 10; my(z0 = 1 + O(t^N) + O(u^N), z1=0, n=1,
      Fz = subst(Fz, 'c0, subst(A106651_ser(N), 'x, 't)));
      while(n++,
        z1 = z0 - subst(Fz, z, z0)/subst(deriv(Fz, z) , z, z0);
        if (z1 == z0, break()); z0 = z1);
      vector(N-10, n, vector(n, k, polcoeff(polcoeff(z0, n-k), k-1)));
    };
    concat(seq(11))

Formula

A106651(n) = T(n,2) = Sum_{k=3..n-1} T(n,k), for n>=4.
T(n,n-2) = A054000(n-3) for n>= 5, T(n,n-3) = 8*A006325(n-3) for n>=6. - Gheorghe Coserea, Apr 19 2017