A285174 a(n) is the number of Dyck paths of (2,3)-knight moves of size n.
1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 7, 0, 7, 4, 38, 0, 52, 44, 192, 34, 445, 328, 1061, 658, 3431, 2266, 7293, 7632, 24322, 17946, 58812, 70006, 171467, 166364, 488958, 581520, 1290879, 1599416, 3972675, 4807640, 10523661, 14798098, 31868794, 41478042, 89608805, 131175180, 259840862, 371465030
Offset: 0
Examples
For n=10 the a(10)=7 solutions are: 3 2 5 4 3 4 5 2 3 5 2 4 3 5 4 2 5 3 2 4 5 3 4 2 5 4 3 2 where the steps are encoded as follows: 2 <-> (2,-3), 3 <-> (2,3), 4 <-> (3,-2), 5 <-> (3,2).
Links
- Gheorghe Coserea, Table of n, a(n) for n = 0..400
- Gheorghe Coserea, MiniZinc model for generating solutions
- J. Labelle and Y.-N. Yeh, Dyck paths of knight moves, Discrete Applied Math., 24 (1989), 213-221.
Crossrefs
Cf. A005220.
Programs
-
PARI
x='x; y = 'y; Fxy = x^16*y^8 - x^12*(2*x^3+1)*y^7 + x^11*(2*x^3+x+2)*y^6 - x^8*(2*x^5+2*x^3+x^2+1)*y^5 + x^4*(x^8+4*x^6+1)*y^4 - x^4*(2*x^5+2*x^3+x^2+1)*y^3 + x^3*(2*x^3 + x + 2)*y^2 - (2*x^3+1)*y + 1; seq(N) = { my(y0 = 1 + O('x^N), y1=0, n=1); while(n++, y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0); if (y1 == y0, break()); y0 = y1); Vec(y0); }; seq(48)
Formula
0 = x^16*y^8 - x^12*(2*x^3+1)*y^7 + x^11*(2*x^3+x+2)*y^6 - x^8*(2*x^5+2*x^3+x^2+1)*y^5 + x^4*(x^8+4*x^6+1)*y^4 - x^4*(2*x^5+2*x^3+x^2+1)*y^3 + x^3*(2*x^3 + x + 2)*y^2 - (2*x^3+1)*y + 1, where y(x) is the g.f. [Labelle and Yeh, 1989, Theorem 3.4]
From Vaclav Kotesovec, Apr 21 2017: (Start)
a(n) ~ sqrt((s*(-3 + (3 + 2*r + 6*r^3)*s - r*(2 + 3*r^2 + 7*r^3 + 9*r^5)*s^2 + 2*(r + 10*r^7 + 3*r^9)*s^3 - r^5*(4 + 5*r^2 + 11*r^3 + 13*r^5)*s^4 + r^8*(11 + 6*r + 14*r^3)*s^5 - 3*r^9*(2 + 5*r^3)*s^6 + 8*r^13*s^7)) / (r*(2 + r^3*(2 - 3*s) - 6*r^4*s - 6*r^6*s + 2*r^7*(12 - 5*s)*s^2 - 10*r^5*s^3 - 20*r^10*s^3 + 30*r^11*s^4 - 42*r^12*s^5 + 28*r^13*s^6 + 10*r^8*s^3*(-2 + 3*s) + r*(1 - 3*s + 6*s^2) + 3*r^9*s^2*(2 + 5*s^2 - 7*s^3)))) / (sqrt(2*Pi) * r^(n - 1/2) * n^(3/2)), where
r = 0.56519771738363939643752801324703081609848397675955382755548381... and
s = 1.35503954183039159917814688295718993182959905413029119006926443... are roots of the system of equations
1 + r^3*(2 + r + 2*r^3)*s^2 + r^4*(1 + 4*r^6 + r^8)*s^4 + r^11*(2 + r + 2*r^3)*s^6 + r^16*s^8 = (1 + 2*r^3)*s*(1 + r^4*s^2 + r^6*s^2 + r^8*s^4 + r^10*s^4 + r^12*s^6) and
2*r^3*s*(2 + r + 2*r^3 + 2*r*(1 + 4*r^6 + r^8)*s^2 + 3*r^8*(2 + r + 2*r^3)*s^4 + 4*r^13*s^6) = (1 + 2*r^3)*(1 + 3*r^4*s^2 + 3*r^6*s^2 + 5*r^8*s^4 + 5*r^10*s^4 + 7*r^12*s^6).
a(n+1)/a(n) tends to 1/r = 1.769292354238631415240409464335033492670553045898857...
(End)
Comments