cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285174 a(n) is the number of Dyck paths of (2,3)-knight moves of size n.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 7, 0, 7, 4, 38, 0, 52, 44, 192, 34, 445, 328, 1061, 658, 3431, 2266, 7293, 7632, 24322, 17946, 58812, 70006, 171467, 166364, 488958, 581520, 1290879, 1599416, 3972675, 4807640, 10523661, 14798098, 31868794, 41478042, 89608805, 131175180, 259840862, 371465030
Offset: 0

Views

Author

Gheorghe Coserea, Apr 15 2017

Keywords

Comments

A Dyck path of (s,r)-knight moves of size n is a path in ZxZ which:
(1) is made only of steps (s,-r),(s,r),(r,-s),(r,s);
(2) starts at (0,0) and ends at (n,0);
(3) never goes strictly below the x-axis.

Examples

			For n=10 the a(10)=7 solutions are:
3 2 5 4
3 4 5 2
3 5 2 4
3 5 4 2
5 3 2 4
5 3 4 2
5 4 3 2
where the steps are encoded as follows: 2 <-> (2,-3), 3 <-> (2,3), 4 <-> (3,-2), 5 <-> (3,2).
		

Crossrefs

Cf. A005220.

Programs

  • PARI
    x='x; y = 'y;
    Fxy = x^16*y^8 - x^12*(2*x^3+1)*y^7 + x^11*(2*x^3+x+2)*y^6 - x^8*(2*x^5+2*x^3+x^2+1)*y^5 + x^4*(x^8+4*x^6+1)*y^4 - x^4*(2*x^5+2*x^3+x^2+1)*y^3 + x^3*(2*x^3 + x + 2)*y^2 - (2*x^3+1)*y + 1;
    seq(N) = {
      my(y0 = 1 + O('x^N), y1=0, n=1);
      while(n++,
        y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0);
        if (y1 == y0, break()); y0 = y1); Vec(y0);
    };
    seq(48)

Formula

0 = x^16*y^8 - x^12*(2*x^3+1)*y^7 + x^11*(2*x^3+x+2)*y^6 - x^8*(2*x^5+2*x^3+x^2+1)*y^5 + x^4*(x^8+4*x^6+1)*y^4 - x^4*(2*x^5+2*x^3+x^2+1)*y^3 + x^3*(2*x^3 + x + 2)*y^2 - (2*x^3+1)*y + 1, where y(x) is the g.f. [Labelle and Yeh, 1989, Theorem 3.4]
From Vaclav Kotesovec, Apr 21 2017: (Start)
a(n) ~ sqrt((s*(-3 + (3 + 2*r + 6*r^3)*s - r*(2 + 3*r^2 + 7*r^3 + 9*r^5)*s^2 + 2*(r + 10*r^7 + 3*r^9)*s^3 - r^5*(4 + 5*r^2 + 11*r^3 + 13*r^5)*s^4 + r^8*(11 + 6*r + 14*r^3)*s^5 - 3*r^9*(2 + 5*r^3)*s^6 + 8*r^13*s^7)) / (r*(2 + r^3*(2 - 3*s) - 6*r^4*s - 6*r^6*s + 2*r^7*(12 - 5*s)*s^2 - 10*r^5*s^3 - 20*r^10*s^3 + 30*r^11*s^4 - 42*r^12*s^5 + 28*r^13*s^6 + 10*r^8*s^3*(-2 + 3*s) + r*(1 - 3*s + 6*s^2) + 3*r^9*s^2*(2 + 5*s^2 - 7*s^3)))) / (sqrt(2*Pi) * r^(n - 1/2) * n^(3/2)), where
r = 0.56519771738363939643752801324703081609848397675955382755548381... and
s = 1.35503954183039159917814688295718993182959905413029119006926443... are roots of the system of equations
1 + r^3*(2 + r + 2*r^3)*s^2 + r^4*(1 + 4*r^6 + r^8)*s^4 + r^11*(2 + r + 2*r^3)*s^6 + r^16*s^8 = (1 + 2*r^3)*s*(1 + r^4*s^2 + r^6*s^2 + r^8*s^4 + r^10*s^4 + r^12*s^6) and
2*r^3*s*(2 + r + 2*r^3 + 2*r*(1 + 4*r^6 + r^8)*s^2 + 3*r^8*(2 + r + 2*r^3)*s^4 + 4*r^13*s^6) = (1 + 2*r^3)*(1 + 3*r^4*s^2 + 3*r^6*s^2 + 5*r^8*s^4 + 5*r^10*s^4 + 7*r^12*s^6).
a(n+1)/a(n) tends to 1/r = 1.769292354238631415240409464335033492670553045898857...
(End)