A285183 Nearest integer to n*omega(n)/phi(n).
0, 2, 2, 2, 1, 6, 1, 2, 2, 5, 1, 6, 1, 5, 4, 2, 1, 6, 1, 5, 4, 4, 1, 6, 1, 4, 2, 5, 1, 11, 1, 2, 3, 4, 3, 6, 1, 4, 3, 5, 1, 11, 1, 4, 4, 4, 1, 6, 1, 5, 3, 4, 1, 6, 3, 5, 3, 4, 1, 11, 1, 4, 4, 2, 3, 10, 1, 4, 3, 9, 1, 6, 1, 4, 4, 4, 3, 10, 1, 5, 2, 4, 1, 11, 3, 4, 3, 4, 1, 11, 3, 4, 3, 4, 3, 6
Offset: 1
Keywords
References
- József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter I, p. 34, section I.32.3.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Paul Erdős, On the integers relatively prime to n and on a number theoretic function considered by Jacobsthal, Math. Scand., 10, 1962, 163-170.
Programs
-
Magma
[Round(n*#PrimeDivisors(n)/EulerPhi(n)): n in [1..100]]; // Vincenzo Librandi, Apr 21 2017
-
Maple
Digits:=30; A001221 := proc(n) nops(numtheory[factorset](n)) end proc: with(numtheory); f:=n->round(n*A001221(n)/phi(n)); t1:=[seq(f(n),n=1..130)];
-
Mathematica
Round[Table[(n PrimeNu[n] + 1/2)/EulerPhi[n], {n, 1, 100}]] (* Vincenzo Librandi, Apr 21 2017 - confirmed by Giovanni Resta *)
-
PARI
a(n) = {my(f = factor(n)); round(n*omega(f)/eulerphi(f));} \\ Amiram Eldar, Apr 25 2024
Comments