cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285201 Stage at which Ken Knowlton's elevator (version 1) reaches floor n for the first time.

Original entry on oeis.org

1, 2, 5, 14, 45, 174, 825, 4738, 32137, 251338, 2224157, 21952358, 238962581, 2843085270, 36696680241, 510647009850, 7619901954001, 121367981060434, 2055085325869813, 36861997532438654, 698193329457246653, 13924819967953406654, 291683979376372766697, 6402385486361598687666, 146948520147021794869977
Offset: 1

Views

Author

R. L. Graham, May 02 2017

Keywords

Comments

Indices of records in A285200.
When prefixed by a(0)=0, the first differences give A111063. - N. J. A. Sloane, May 03 2017

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, n, ((n-1)^2*a(n-1)
          -(n-2)*(2*n-3)*a(n-2)+(n-1)*(n-3)*a(n-3))/(n-2))
        end:
    seq(a(n), n=1..25);  # Alois P. Heinz, Jul 11 2018
  • Mathematica
    a[n_] := 2 - n + 2 Sum[k!/j!, {k, 0, n-2}, {j, 0, k}];
    Array[a, 25] (* Jean-François Alcover, Nov 01 2020 *)

Formula

a(n) = 2 - n + 2 * Sum_{k=0..n-2} Sum_{j=0..k} k!/j!.
For n >= 2, a(n) = 1+n+2*Sum_{k=2..n} C(n,k)*(k-1)! = 1+n+2*n!*Sum_{k=2..n} 1/(k*(n-k)!). - N. J. A. Sloane, May 03 2017
E.g.f.: exp(x)*(1-x-2*log(1-x)). Omitting the factor exp(x), this gives (essentially) the e.g.f. for A098558 (or A052849). - N. J. A. Sloane, May 03 2017