A285230 Number of multisets of exactly n partitions of positive integers into distinct parts with total sum of parts equal to 2n.
1, 1, 3, 5, 11, 19, 37, 63, 115, 195, 339, 566, 957, 1573, 2599, 4217, 6842, 10962, 17531, 27767, 43862, 68769, 107469, 166942, 258461, 398124, 611237, 934356, 1423724, 2161145, 3270560, 4932647, 7418099, 11121610, 16629101, 24794130, 36874451, 54698714
Offset: 0
Keywords
Examples
a(3) = 5: {4,1,1}, {31,1,1}, {3,2,1}, {21,2,1}, {2,2,2}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
with(numtheory): g:= proc(n) option remember; `if`(n=0, 1, add(add( `if`(d::odd, d, 0), d=divisors(j))*g(n-j), j=1..n)/n) end: a:= proc(n) option remember; `if`(n=0, 1, add(add( d*g(d+1), d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..50);
-
Mathematica
g[n_] := g[n] = If[n == 0, 1, Sum[Sum[If[OddQ[d], d, 0], {d, Divisors[j]}]* g[n - j], {j, 1, n}]/n]; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*g[d + 1], {d, Divisors[j]}]*a[n - j], {j, 1, n}]/n]; a /@ Range[0, 50] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)