cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285230 Number of multisets of exactly n partitions of positive integers into distinct parts with total sum of parts equal to 2n.

Original entry on oeis.org

1, 1, 3, 5, 11, 19, 37, 63, 115, 195, 339, 566, 957, 1573, 2599, 4217, 6842, 10962, 17531, 27767, 43862, 68769, 107469, 166942, 258461, 398124, 611237, 934356, 1423724, 2161145, 3270560, 4932647, 7418099, 11121610, 16629101, 24794130, 36874451, 54698714
Offset: 0

Views

Author

Alois P. Heinz, Apr 14 2017

Keywords

Examples

			a(3) = 5: {4,1,1}, {31,1,1}, {3,2,1}, {21,2,1}, {2,2,2}.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n) option remember; `if`(n=0, 1, add(add(
         `if`(d::odd, d, 0), d=divisors(j))*g(n-j), j=1..n)/n)
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*g(d+1), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Sum[If[OddQ[d], d, 0], {d, Divisors[j]}]* g[n - j], {j, 1, n}]/n];
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*g[d + 1], {d, Divisors[j]}]*a[n - j], {j, 1, n}]/n];
    a /@ Range[0, 50] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)

Formula

G.f.: Product_{j>=1} 1/(1-x^j)^A000009(j+1).
a(n) = A285229(2n,n).