cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285236 Number of entries in the eighth cycles of all permutations of [n].

Original entry on oeis.org

1, 38, 964, 21018, 431007, 8671656, 175065071, 3591984289, 75473055841, 1631318215818, 36369569578502, 837619857754240, 19943142053389024, 491010028537071248, 12499878460133012064, 328936666440527737296, 8943724877454118086096, 251125623168859020015072
Offset: 8

Views

Author

Alois P. Heinz, Apr 15 2017

Keywords

Comments

Each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements.

Crossrefs

Column k=8 of A185105.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          add((p-> p+`if`(i=1, coeff(p, x, 0)*j*x, 0))(
          b(n-j, max(0, i-1)))*binomial(n-1, j-1)*
          (j-1)!, j=1..n)))
        end:
    a:= n-> coeff(b(n, 8), x, 1):
    seq(a(n), n=8..30);
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, Sum[Function[p, p + If[i == 1, Coefficient[p, x, 0]*j*x, 0]][b[n - j, Max[0, i - 1]]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]]];
    a[n_] := Coefficient[b[n, 8], x, 1];
    Table[a[n], {n, 8, 30}] (* Jean-François Alcover, Jun 01 2018, from Maple *)

Formula

a(n) = A185105(n,8).
Recurrence: (n-8)*(n-5)*a(n) = (7*n^3 - 117*n^2 + 618*n - 1036)*a(n-1) - (21*n^4 - 450*n^3 + 3521*n^2 - 11996*n + 15092)*a(n-2) + 5*(7*n^5 - 190*n^4 + 2039*n^3 - 10842*n^2 + 28614*n - 30016)*a(n-3) - (35*n^6 - 1185*n^5 + 16635*n^4 - 124015*n^3 + 518011*n^2 - 1149493*n + 1058400)*a(n-4) + (n-6)*(21*n^6 - 747*n^5 + 11033*n^4 - 86597*n^3 + 380805*n^2 - 888917*n + 859586)*a(n-5) - (7*n^8 - 352*n^7 + 7728*n^6 - 96726*n^5 + 754656*n^4 - 3756732*n^3 + 11646888*n^2 - 20547489*n + 15780868)*a(n-6) + (n-7)^8*(n-4)*a(n-7), for n>8. - Vaclav Kotesovec, Apr 25 2017
a(n) ~ n!*n/256. - Vaclav Kotesovec, Apr 25 2017