cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285239 Number of entries in the n-th cycles of all permutations of [2n].

Original entry on oeis.org

3, 27, 463, 12217, 441383, 20338679, 1141073295, 75473055841, 5748862140283, 495446888127507, 47648289796265871, 5057570671179281161, 587173799850231036207, 74005641366738437835967, 10062023872139208015273375, 1467822867614662009540883265
Offset: 1

Views

Author

Alois P. Heinz, Apr 15 2017

Keywords

Comments

Each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements.
All terms are odd.

Crossrefs

Cf. A185105.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          add((p-> p+`if`(i=1, coeff(p, x, 0)*j*x, 0))((j-1)!
          *b(n-j, max(0, i-1)))*binomial(n-1, j-1), j=1..n)))
        end:
    a:= n-> coeff(b(2*n, n), x, 1):
    seq(a(n), n=1..20);
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, Sum[Function[p, p + If[i == 1, Coefficient[p, x, 0] j x, 0]][(j - 1)! b[n - j, Max[0, i - 1]]] Binomial[ n - 1, j - 1], {j, 1, n}]]];
    a[n_] := Coefficient[b[2n, n], x, 1];
    Array[a, 20] (* Jean-François Alcover, Jun 01 2018, from Maple *)

Formula

a(n) = A185105(2n,n).
a(n) ~ 2^(3*n-1) * c^(2*n) * n^(n - 1/2) / (sqrt(Pi*(c-1)) * (2*c-1)^n * exp(n)), where c = -LambertW(-1,-exp(-1/2)/2) = 1.7564312086261696769827376166... - Vaclav Kotesovec, Apr 15 2017, updated Mar 10 2020