cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285270 a(n) = H_n(n), where H_n is the physicist's n-th Hermite polynomial.

Original entry on oeis.org

1, 2, 14, 180, 3340, 80600, 2389704, 83965616, 3409634960, 157077960480, 8093278209760, 461113571640128, 28784033772836544, 1953535902100115840, 143219579014652040320, 11279408109860685024000, 949705205977314865582336, 85131076752851318807814656, 8094279370190580822082014720
Offset: 0

Views

Author

Natan Arie Consigli, May 24 2017

Keywords

Examples

			Knowing that H_3(x) = 8x^3-12x, a(3) = H_3(3) = 8*3^3-12*3 = 180.
		

Crossrefs

Cf. A089466 (probabilist's variant).

Programs

  • Mathematica
    Table[HermiteH[n, n], {n, 0, 18}] (* Michael De Vlieger, May 25 2017 *)
  • PARI
    a(n) = polhermite(n, n); \\ Michel Marcus, May 25 2017
    
  • Python
    from sympy import hermite
    def a(n): return hermite(n, n) # Indranil Ghosh, May 25 2017

Formula

a(n) ~ exp(-1/4) * 2^n * n^n. - Vaclav Kotesovec, Nov 07 2021

Extensions

More terms from Michel Marcus, May 25 2017