A285270 a(n) = H_n(n), where H_n is the physicist's n-th Hermite polynomial.
1, 2, 14, 180, 3340, 80600, 2389704, 83965616, 3409634960, 157077960480, 8093278209760, 461113571640128, 28784033772836544, 1953535902100115840, 143219579014652040320, 11279408109860685024000, 949705205977314865582336, 85131076752851318807814656, 8094279370190580822082014720
Offset: 0
Keywords
Examples
Knowing that H_3(x) = 8x^3-12x, a(3) = H_3(3) = 8*3^3-12*3 = 180.
Links
- Wikipedia, Hermite polynomial
Programs
-
Mathematica
Table[HermiteH[n, n], {n, 0, 18}] (* Michael De Vlieger, May 25 2017 *)
-
PARI
a(n) = polhermite(n, n); \\ Michel Marcus, May 25 2017
-
Python
from sympy import hermite def a(n): return hermite(n, n) # Indranil Ghosh, May 25 2017
Formula
a(n) ~ exp(-1/4) * 2^n * n^n. - Vaclav Kotesovec, Nov 07 2021
Extensions
More terms from Michel Marcus, May 25 2017