A285246 Expansion of Product_{k>=1} (1 - x^(5*k))^(5*k) / (1 - x^k)^k.
1, 1, 3, 6, 13, 19, 43, 71, 130, 217, 380, 619, 1049, 1685, 2757, 4404, 7027, 11014, 17326, 26820, 41488, 63514, 96970, 146808, 221659, 332212, 496439, 737535, 1091938, 1608564, 2361929, 3452736, 5031138, 7302373, 10566038, 15234196, 21900182, 31380435
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[1 / ((1-x^(5*k+1))^(5*k+1) * (1-x^(5*k+2))^(5*k+2) * (1-x^(5*k+3))^(5*k+3) * (1-x^(5*k+4))^(5*k+4)), {k,0,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Apr 15 2017 *) nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^(5*k)/((1 - x^k)^k), {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Apr 15 2017 *)
-
PARI
x='x+O('x^100); Vec(prod(k=0, 100, 1 / ((1 - x^(5*k + 1))^(5*k + 1)*(1 - x^(5*k + 2))^(5*k + 2)*(1 - x^(5*k + 3))^(5*k + 3)*(1 - x^(5*k + 4))^(5*k + 4)))) \\ Indranil Ghosh, Apr 15 2017
Formula
G.f.: Product_{k>=0} 1 / ((1-x^(5*k+1))^(5*k+1) * (1-x^(5*k+2))^(5*k+2) * (1-x^(5*k+3))^(5*k+3) * (1-x^(5*k+4))^(5*k+4)).
a(n) ~ exp(-1/3 + 3*(Zeta(3)/5)^(1/3)*n^(2/3)) * A^4 * Zeta(3)^(1/18) / (2^(1/3) * 5^(17/36) * sqrt(3*Pi) * n^(5/9)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 16 2017
Comments