cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A285310 Expansion of Product_{k>=0} 1/(1 + x^(3*k+2))^(3*k+2).

Original entry on oeis.org

1, 0, -2, 0, 3, -5, -4, 10, -3, -15, 25, 9, -47, 37, 55, -118, 28, 182, -231, -88, 484, -351, -474, 1047, -306, -1479, 1985, 370, -3657, 3120, 2757, -7868, 3686, 8889, -14950, 1255, 22540, -25069, -9557, 49333, -35638, -40172, 96943, -37509, -111145, 172256
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2017

Keywords

Crossrefs

Product_{k>=0} 1/(1 + x^(m*k+m-1))^(m*k+m-1): A284628 (m=2), this sequence (m=3), A285311 (m=4).

A285339 Expansion of Product_{k>=0} (1 + x^(4*k+3))^(4*k+3).

Original entry on oeis.org

1, 0, 0, 3, 0, 0, 3, 7, 0, 1, 21, 11, 0, 21, 54, 15, 7, 96, 122, 19, 74, 311, 217, 44, 351, 768, 367, 209, 1227, 1663, 591, 989, 3402, 3225, 1156, 3609, 8289, 5815, 3053, 11096, 18015, 10176, 9466, 29593, 36249, 18454, 28960, 71093, 68438, 37297, 81606
Offset: 0

Views

Author

Seiichi Manyama, Apr 17 2017

Keywords

Crossrefs

Product_{k>=0} (1 + x^(m*k+m-1))^(m*k+m-1): A262736 (m=2), A262948 (m=3), this sequence (m=4), A285340 (m=5).

Formula

a(n) = (-1)^n * A285213(n).
a(n) ~ exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / 4) * Zeta(3)^(1/6) / (2^(23/24) * 3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Nov 10 2017
Showing 1-2 of 2 results.