A285313 Number of pairs (a,b) such that a*b = n and d(a) = d(b) with d = A000005 and a <= b.
1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Project Euler, Problem 598: Split Divisibilities
Programs
-
Mathematica
a[n_]:=Sum[Boole[d<=(n/d) && DivisorSigma[0, d] == DivisorSigma[0, n/d]], {d, Divisors[n]}]; Table[a[n], {n, 100}] (* Indranil Ghosh, Apr 18 2017 *)
-
PARI
a(n) = sumdiv(n, d, (d <= n/d) && (numdiv(d) == numdiv(n/d)));
-
Python
from sympy import divisors, divisor_count def a(n): return sum([d<=(n/d) and divisor_count(d)==divisor_count(n/d) for d in divisors(n)]) # Indranil Ghosh, Apr 18 2017
Formula
a(p) = 0; for prime p and for an odd power of a prime.
a(p^2k) = 1, for an even power of a prime.