cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285314 Numbers k such that the k-th term of some (generalized) Lucas sequence has no primitive prime factor.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 18, 30
Offset: 1

Views

Author

Tomohiro Yamada, Apr 17 2017

Keywords

Comments

For a generalized Lucas sequence {U(n)} = {(a^n - b^n)/(a - b)}, where a + b and ab are nonzero coprime integers and (a/b) is not a root of unity, a prime factor of the n-th term of some Lucas sequence U(n) is called primitive if it does not divide U(r) for any r < n.
Let P = a + b > 0, Q = ab and D = P^2 - 4Q = (a - b)^2. In the case a, b are real (equivalently, D > 0), Carmichael shows that, if n <> 1, 2, 6, then U(n) has at least one primitive prime factor not dividing D except U(3) ((P, Q, D) = (1, -2, 9), (1, -1, 5)), U(5) ((P, Q, D) = (1, -1, 5)) and U(12) ((P, Q, D) = (1, -1, 5)).
Voutier determines the cases U(n) has no primitive prime factor for n = 5, 7 <= n <= 30. For n = 5, 7 <= n <= 30, any prime factor of U(n) divides D or U_r for some r < n in the following cases:
U(5): (P, Q, D) = (1, -1, 5)*, (1, 2, -7), (1, 3, -11), (1, 4, -15)*, (2, 11, -40)*, (12, 55, -76), (12, 377, -1364),
U(7): (P, Q, D) = (1, 2, -7)*, (1, 5, -19),
U(8): (P, Q, D) = (1, 2, -7), (2, 7, -24),
U(10): (P, Q, D) = (2, 3, -8), (5, 7, -3), (5, 18, -47),
U(12): (P, Q, D) = (1, -1, 5), (1, 2, -7), (1, 3, -11), (1, 4, -15), (1, 5, -19), (2, 15, -56),
U(13), U(18), U(30): (P, Q, D) = (1, 2, -7).
(The symbol * indicates that any prime factor of the corresponding U(n) divides D)
Bilu, Hanrot and Voutier shows that these are all for n = 5, n >= 7. Hence this sequence is complete.
From Jianing Song, Feb 23 2019: (Start)
Let {U(n)} be a generalized Lucas sequence. If p is a prime U(p) has no primitive prime factor, then U(p) = +-1. In contrast, if k is a composite number such that U(k) has no primitive prime factor, then U(k) cannot be +-1. As a result, the possible solutions to U(k) = +-1 for some Lucas sequence are k = 1, 2, 3, 5, 7, 13.
From U(1) = 1, U(2) = P, U(3) = P^2 - Q, U(4) = P*(P^2 - 2*Q), U(6) = P*(P^2 - Q)*(P^2 - 3*Q) we can see that for k = 1, 2, 3, 4, 6, there are infinitely many Lucas sequences such that U(k) has no primitive prime factor. Also, for p = 2, 3, there are infinitely many Lucas sequences such that any prime factor of U(p) divides D.
This sequence lists also numbers k such that E(p) = k has no solution over the primes for some Lucas sequence {U(n)}, where E(p) is the entry point of {U(n)} modulo p, that is, the smallest m > 0 such that p divides U(m). (End)

Examples

			If (P, Q, D) = (1, -1, 5) (giving the Fibonacci sequence), U(12) = 144 = 2^4 * 3^2, while U(4) = 3 and U(6) = 8 = 2^3. Hence U(12) with (P, Q, D) = (1, -1, 5) has no primitive prime factor and 12 belongs to this sequence.
		

Crossrefs

Cf. A001578, A058036, A246556 (smallest primitive prime factor of Fibonacci(n), Lucas(n) and Pell(n)).
Cf. A086597, A086600 (number of primitive prime factors in Fibonacci(n) and Lucas(n)).