A285321 Square array A(1,k) = A019565(k), A(n,k) = A065642(A(n-1,k)), read by descending antidiagonals.
2, 3, 4, 6, 9, 8, 5, 12, 27, 16, 10, 25, 18, 81, 32, 15, 20, 125, 24, 243, 64, 30, 45, 40, 625, 36, 729, 128, 7, 60, 75, 50, 3125, 48, 2187, 256, 14, 49, 90, 135, 80, 15625, 54, 6561, 512, 21, 28, 343, 120, 225, 100, 78125, 72, 19683, 1024
Offset: 1
Examples
The top left 12x6 corner of the array: 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 42, 35 4, 9, 12, 25, 20, 45, 60, 49, 28, 63, 84, 175 8, 27, 18, 125, 40, 75, 90, 343, 56, 147, 126, 245 16, 81, 24, 625, 50, 135, 120, 2401, 98, 189, 168, 875 32, 243, 36, 3125, 80, 225, 150, 16807, 112, 441, 252, 1225 64, 729, 48, 15625, 100, 375, 180, 117649, 196, 567, 294, 1715
Links
- Antti Karttunen, Table of n, a(n) for n = 1..120; the first 15 antidiagonals of array
Crossrefs
Programs
-
Mathematica
a065642[n_] := Module[{k}, If[n == 1, Return[1], k = n + 1; While[ EulerPhi[k]/k != EulerPhi[n]/n, k++]]; k]; A[1, k_] := Times @@ Prime[Flatten[Position[#, 1]]]&[Reverse[ IntegerDigits[k, 2]]]; A[n_ /; n > 1, k_] := A[n, k] = a065642[A[n - 1, k]]; Table[A[n - k + 1, k], {n, 1, 10}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Nov 17 2019 *)
-
Python
from operator import mul from sympy import prime, primefactors def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # This function from Chai Wah Wu def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n)) def a065642(n): if n==1: return 1 r=a007947(n) n = n + r while a007947(n)!=r: n+=r return n def A(n, k): return a019565(k) if n==1 else a065642(A(n - 1, k)) for n in range(1, 11): print([A(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Apr 18 2017
-
Scheme
(define (A285321 n) (A285321bi (A002260 n) (A004736 n))) (define (A285321bi row col) (if (= 1 row) (A019565 col) (A065642 (A285321bi (- row 1) col))))
Comments