A285424 Sum of the entries in the last blocks of all set partitions of [n].
1, 5, 19, 75, 323, 1512, 7630, 41245, 237573, 1451359, 9365361, 63604596, 453206838, 3378581609, 26285755211, 212953670251, 1792896572319, 15658150745252, 141619251656826, 1324477898999161, 12791059496663293, 127395689514237279, 1307010496324272157
Offset: 1
Keywords
Examples
a(3) = 19 because the sum of the entries in the last blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 6+3+2+5+3 = 19.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..100
- Wikipedia, Partition of a set
Programs
-
Maple
a:= proc(h) option remember; local b; b:= proc(n, m, s) option remember; `if`(n=0, s, add(b(n-1, max(m, j), `if`(j
-
Mathematica
a[h_] := a[h] = Module[{b}, b[n_, m_, s_] := b[n, m, s] = If[n == 0, s, Sum[b[n-1, Max[m, j], If[j < m, s, h - n + 1 + If[j == m, s, 0]]], {j, 1, m + 1}]]; b[h, 0, 0]]; Array[a, 25] (* Jean-François Alcover, May 22 2018, translated from Maple *)