A285425 Square array A(n,k), n>=1, k>=0, read by antidiagonals, where column k is the expansion of Sum_{j>=1} (2*j - 1)^k*x^(2*j-1)/(1 - x^(2*j-1)).
1, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 10, 1, 2, 1, 1, 28, 1, 6, 2, 1, 1, 82, 1, 26, 4, 2, 1, 1, 244, 1, 126, 10, 8, 1, 1, 1, 730, 1, 626, 28, 50, 1, 3, 1, 1, 2188, 1, 3126, 82, 344, 1, 13, 2, 1, 1, 6562, 1, 15626, 244, 2402, 1, 91, 6, 2, 1, 1, 19684, 1, 78126, 730, 16808, 1, 757, 26, 12, 2
Offset: 1
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, ... 2, 4, 10, 28, 82, 244, ... 1, 1, 1, 1, 1, 1, ... 2, 6, 26, 126, 626, 3126, ... 2, 4, 10, 28, 82, 244, ...
Links
- Eric Weisstein's World of Mathematics, Odd Divisor Function
- Index entries for sequences related to sums of divisors
Crossrefs
Programs
-
Mathematica
Table[Function[k, SeriesCoefficient[Sum[(2 i - 1)^k x^(2 i - 1)/(1 - x^(2 i - 1)), {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 1, j}] // Flatten
Formula
G.f. of column k: Sum_{j>=1} (2*j - 1)^k*x^(2*j-1)/(1 - x^(2*j-1)).
Extensions
Offset changed by Ilya Gutkovskiy, Oct 25 2018
Comments