cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285440 Consider the sums of the numbers < n that share the same greatest common divisor with n. Sequence lists numbers that have only one of those sums equal to n.

Original entry on oeis.org

3, 4, 8, 9, 15, 16, 20, 21, 27, 28, 32, 33, 39, 40, 44, 45, 51, 52, 56, 57, 63, 64, 68, 69, 75, 76, 80, 81, 87, 88, 92, 93, 99, 100, 104, 105, 111, 112, 116, 117, 123, 124, 128, 129, 135, 136, 140, 141, 147, 148, 152, 153, 159, 160, 164, 165, 171, 172, 176, 177
Offset: 1

Views

Author

Paolo P. Lava, Apr 19 2017

Keywords

Comments

Numbers with no sum equal to n are listed in A108118, with two sums equal to n are listed in A017593 and with three sums equal to n in A008594.
First difference has period 4: {1,4,1,6}.
Numbers that are congruent to {3, 4, 8, 9} mod 12. - Amiram Eldar, Dec 31 2021

Examples

			20 is in the sequence because:
gcd(k,20) = 1 for k = 1, 3, 7, 9, 11, 13, 17, 19: sum is 80.
gcd(k,20) = 2 for k = 2, 6, 14, 18: sum is 40.
gcd(k,20) = 4 for k = 4, 8, 12, 16: sum is 40.
gcd(k,20) = 5 for k = 5, 15: sum is 20.
gcd(k,20) = 10 for k = 10: sum is 10.
		

Crossrefs

Programs

  • Maple
    P:=proc(q) local a,k,n,t;
    for n from 1 to q do a:=array(1..n-1); for k from 1 to n-1 do a[k]:=0; od;
    for k from 1 to n-1 do a[gcd(n,k)]:=a[gcd(n,k)]+k; od; t:=0;
    for k from 1 to n-1 do if a[k]=n then t:=t+1; fi; od; if t=1 then print(n); fi;
    od; end: P(10^6);
  • Mathematica
    Flatten@ Position[#, k_ /; Length@ k == 1] &@ Table[Select[Transpose@ {Values@ #, Keys@ #} &@ Map[Total, PositionIndex@ Map[GCD @@ {n, #} &, Range[n - 1]]], First@ # == n &][[All, -1]], {n, 180}] (* Michael De Vlieger, Apr 28 2017, Version 10 *)
    LinearRecurrence[{1, 0, 0, 1, -1}, {3, 4, 8, 9, 15}, 60] (* Amiram Eldar, Dec 31 2021 *)
  • PARI
    a(n) = n--; [3, 4, 8, 9][n%4+1] + 12*(n\4) \\ David A. Corneth, Apr 28 2017
    
  • PARI
    is(n) = {my(d=divisors(n), map=vector(d[#d-1]), v=vector(#d-1)); for(i=1,#d-1, map[d[i]]=i); for(i=1,n-1,v[map[gcd(i, n)]]+=i); sum(i=1,#v,v[i]==n)==1} \\ David A. Corneth, Apr 28 2017
    
  • PARI
    is(n) = vecsort(concat([3, 4, 8, 9], [n%12]), ,8)==[3, 4, 8, 9] \\ David A. Corneth, Apr 28 2017

Formula

From Chai Wah Wu, Nov 01 2018: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
G.f.: x*(3*x^4 + x^3 + 4*x^2 + x + 3)/(x^5 - x^4 - x + 1). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (3-sqrt(3))*Pi/36. - Amiram Eldar, Dec 31 2021