A285441 Expansion of q^(-2/5) * r(q)^2 * (1 + r(q) * r(q^2)^2) in powers of q where r() is the Rogers-Ramanujan continued fraction.
1, -1, 0, 2, -2, -2, 5, -1, -6, 7, 2, -12, 6, 11, -15, -2, 22, -14, -20, 31, 4, -41, 24, 37, -58, -9, 80, -44, -68, 105, 12, -143, 83, 119, -184, -16, 238, -144, -196, 307, 30, -391, 234, 317, -502, -49, 638, -374, -511, 804, 68, -1014, 600, 802, -1254, -99, 1562
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..5000
- Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
Crossrefs
Programs
-
Ruby
def s(k, m, n) s = 0 (1..n).each{|i| s += i if n % i == 0 && i % k == m} s end def A007325(n) ary = [1] a = [0] + (1..n).map{|i| s(5, 1, i) + s(5, 4, i) - s(5, 2, i) - s(5, 3, i)} (1..n).each{|i| ary << (1..i).inject(0){|s, j| s - a[j] * ary[-j]} / i} ary end def mul(f_ary, b_ary, m) s1, s2 = f_ary.size, b_ary.size ary = Array.new(s1 + s2 - 1, 0) (0..s1 - 1).each{|i| (0..s2 - 1).each{|j| ary[i + j] += f_ary[i] * b_ary[j] } } ary[0..m] end def A285441(n) ary1 = A007325(n) ary2 = Array.new(n + 1, 0) (0..n / 2).each{|i| ary2[i * 2] = ary1[i]} ary = [-1] + mul(ary1, mul(ary2, ary2, n), n)[0..-2] mul(ary2, (0..n).map{|i| -ary[i]}, n) end p A285441(100)
Comments