cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A266648 Expansion of Product_{k>=1} (1 + x^(3*k)) / (1 - x^k).

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 15, 21, 31, 46, 64, 89, 126, 170, 231, 314, 417, 552, 733, 955, 1244, 1617, 2079, 2665, 3413, 4331, 5485, 6931, 8704, 10901, 13629, 16949, 21033, 26045, 32123, 39529, 48553, 59429, 72599, 88518, 107624, 130599, 158209, 191175, 230611, 277717, 333730, 400375, 479598, 573386, 684481
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 02 2016

Keywords

Comments

a(n) is the number of overpartitions wherein only parts that are a multiple of three may be overlined. - Alois P. Heinz, Feb 03 2025

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+`if`(irem(i, 3)=0, 2, 1)*add(b(n-i*j, i-1), j=1..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 03 2025
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(3*k))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ sqrt(7) * exp(sqrt(7*n)*Pi/3) / (24*n).

A285446 Expansion of Product_{k>=1} ((1 + x^k) / (1 - x^(3*k)))^k.

Original entry on oeis.org

1, 1, 2, 6, 9, 18, 36, 60, 105, 191, 314, 528, 896, 1447, 2355, 3831, 6071, 9619, 15207, 23648, 36693, 56724, 86762, 132264, 200853, 302699, 454565, 680061, 1011540, 1499363, 2214570, 3255796, 4770830, 6967967, 10137577, 14703909, 21262751, 30644816, 44041843
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^(3*k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(1/12 + 2^(-4/3) * (93*Zeta(3))^(1/3) * n^(2/3)) * (31*Zeta(3))^(7/36) / (A * 2^(7/9) * 3^(29/36) * sqrt(Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.

A285458 Expansion of Product_{k>=1} ((1 + x^k) / (1 - x^(4*k)))^k.

Original entry on oeis.org

1, 1, 2, 5, 9, 17, 30, 54, 94, 161, 269, 449, 740, 1200, 1930, 3083, 4877, 7650, 11919, 18444, 28363, 43341, 65848, 99523, 149654, 223901, 333448, 494427, 729996, 1073408, 1572264, 2294389, 3336191, 4834261, 6981727, 10050944, 14424665, 20639641, 29447118
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^(4*k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(1/12 + 3 * (13*Zeta(3))^(1/3) * n^(2/3) / 4) * (13*Zeta(3))^(7/36) / (2 * A * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.
Showing 1-3 of 3 results.