A285461 Expansion of Product_{k>=1} ((1 + x^(5*k)) / (1 - x^k))^k.
1, 1, 3, 6, 13, 25, 49, 89, 166, 295, 526, 909, 1571, 2657, 4475, 7432, 12257, 20000, 32436, 52126, 83285, 132057, 208221, 326202, 508372, 787777, 1214828, 1863932, 2847020, 4328765, 6554359, 9882795, 14843999, 22210386, 33112817, 49192218, 72834243
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
nmax = 40; CoefficientList[Series[Product[((1+x^(5*k))/(1-x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
Formula
a(n) ~ exp(1/12 + 3 * 2^(-4/3) * 5^(-2/3) * (103*Zeta(3))^(1/3) * n^(2/3)) * (103*Zeta(3))^(7/36) / (A * 2^(7/9) * 5^(7/18) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.
Comments