cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285508 Numbers with exactly three prime factors, not all distinct.

Original entry on oeis.org

8, 12, 18, 20, 27, 28, 44, 45, 50, 52, 63, 68, 75, 76, 92, 98, 99, 116, 117, 124, 125, 147, 148, 153, 164, 171, 172, 175, 188, 207, 212, 236, 242, 244, 245, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 338, 343, 356, 363, 369, 387, 388, 404, 412, 423, 425, 428, 436, 452
Offset: 1

Views

Author

Kalle Siukola, Apr 20 2017

Keywords

Comments

Cubes of primes together with products of a prime and the square of a different prime.
Numbers k for which A001222(k) = 3, but A001221(k) < 3. - Antti Karttunen, Apr 20 2017

Crossrefs

Setwise difference of A014612 and A007304.
Union of A030078 and A054753.

Programs

  • Maple
    N:= 1000: # for terms <= N
    P:= select(isprime, [2,seq(i,i=3..N/4,2)]): nP:= nops(P):
    sort(select(`<=`,[seq(seq(P[i]*P[j]^2,i=1..nP),j=1..nP)],N)); # Robert Israel, Oct 20 2024
  • Mathematica
    Select[Range[452], PrimeOmega[#] == 3 && PrimeNu[#] < 3 &] (* Giovanni Resta, Apr 20 2017 *)
  • PARI
    isA285508(n) = ((omega(n) < 3) && (bigomega(n) == 3));
    n=0; k=1; while(k <= 10000, n=n+1; if(isA285508(n),write("b285508.txt", k, " ", n);k=k+1));
    \\ Antti Karttunen, Apr 20 2017
    
  • Python
    from sympy import primefactors, primeomega
    def omega(n): return len(primefactors(n))
    def bigomega(n): return primeomega(n)
    print([n for n in range(1, 501) if omega(n)<3 and bigomega(n) == 3]) # Indranil Ghosh, Apr 20 2017 and Kalle Siukola, Oct 25 2023
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A285508(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(primepi(x//(k**2))-(a<<1)+primepi(isqrt(x//k))-1 for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1))))
        return bisection(f,n,n) # Chai Wah Wu, Oct 20 2024
  • Scheme
    ;; With my IntSeq-library.
    (define A285508 (MATCHING-POS 1 1 (lambda (n) (and (= 3 (A001222 n)) (< (A001221 n) 3))))) ;; Antti Karttunen, Apr 20 2017