A285508 Numbers with exactly three prime factors, not all distinct.
8, 12, 18, 20, 27, 28, 44, 45, 50, 52, 63, 68, 75, 76, 92, 98, 99, 116, 117, 124, 125, 147, 148, 153, 164, 171, 172, 175, 188, 207, 212, 236, 242, 244, 245, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 338, 343, 356, 363, 369, 387, 388, 404, 412, 423, 425, 428, 436, 452
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Kalle Siukola, Python program
Crossrefs
Programs
-
Maple
N:= 1000: # for terms <= N P:= select(isprime, [2,seq(i,i=3..N/4,2)]): nP:= nops(P): sort(select(`<=`,[seq(seq(P[i]*P[j]^2,i=1..nP),j=1..nP)],N)); # Robert Israel, Oct 20 2024
-
Mathematica
Select[Range[452], PrimeOmega[#] == 3 && PrimeNu[#] < 3 &] (* Giovanni Resta, Apr 20 2017 *)
-
PARI
isA285508(n) = ((omega(n) < 3) && (bigomega(n) == 3)); n=0; k=1; while(k <= 10000, n=n+1; if(isA285508(n),write("b285508.txt", k, " ", n);k=k+1)); \\ Antti Karttunen, Apr 20 2017
-
Python
from sympy import primefactors, primeomega def omega(n): return len(primefactors(n)) def bigomega(n): return primeomega(n) print([n for n in range(1, 501) if omega(n)<3 and bigomega(n) == 3]) # Indranil Ghosh, Apr 20 2017 and Kalle Siukola, Oct 25 2023
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot def A285508(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x-sum(primepi(x//(k**2))-(a<<1)+primepi(isqrt(x//k))-1 for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1)))) return bisection(f,n,n) # Chai Wah Wu, Oct 20 2024
-
Scheme
;; With my IntSeq-library. (define A285508 (MATCHING-POS 1 1 (lambda (n) (and (= 3 (A001222 n)) (< (A001221 n) 3))))) ;; Antti Karttunen, Apr 20 2017
Comments