A285528 Numbers n such that A217723(n) (sum of first n primorial numbers minus 1) is prime.
2, 3, 5, 6, 7, 8, 11, 14, 21, 41, 42, 43, 74, 78
Offset: 1
Examples
A217723(5) = 2 + 2*3 + 2*3*5 + 2*3*5*7 + 2*3*5*7*11 - 1 = 2557 is prime, thus 5 is in this sequence.
Programs
-
Maple
select(m -> isprime(add(mul(ithprime(i),i=1..j),j=1..m)-1), [$1..89]); # Robert Israel, Apr 20 2017
-
Mathematica
primorial[n_] := Product[Prime[i], {i, n}]; a[n_] := Sum[primorial[i], {i, 1, n}]-1; Select[Range[0, 100], PrimeQ[a[#]] &] (* Second program: *) Flatten@ Position[Accumulate@ FoldList[#1 #2 &, Prime@ Range@ 200] - 1 /. k_ /; k == 1 || CompositeQ@ k -> 0, m_ /; m != 0] (* Michael De Vlieger, Apr 23 2017 *)
Comments