cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285551 Volume of each square prism building the next 3-dimensional box in A100538 where side lengths form the Padovan spiral number sequence (A134816), starting with 1 X 1 X 1, 1 X 1 X 2, 2 X 2 X 2, 2 X 2 X 3, 4 X 4 X 5, ...

Original entry on oeis.org

1, 2, 8, 12, 36, 80, 175, 441, 972, 2304, 5376, 12348, 29008, 67081, 156065, 363350, 843144, 1962396, 4560200, 10600000, 24648975, 57288465, 133194600, 309636096, 719790336, 1673379352, 3890033728, 9043304417, 21023197601, 48872682810, 113615800200, 264124052396
Offset: 1

Views

Author

Peter M. Chema, Apr 25 2017

Keywords

Crossrefs

Programs

  • Mathematica
    A[n_]:=Sum[Binomial[k, n - 2k], {k, 0, Floor[n/2]}]; a000931[n_]:=If[n==0, 1, If[n<3, 0, A[n  - 3]]]; a[n_]:=a000931[n + 5]^2*a000931[n + 6]; Table[a[n], {n, 0, 50}] (* Indranil Ghosh, Apr 26 2017 *)
    LinearRecurrence[{1, 2, 3, -2, 4, -4, -1, -1, 0, -1}, {1, 2, 8, 12, 36, 80, 175, 441, 972, 2304}, 40] (* Vincenzo Librandi, Jul 19 2017 *)
  • PARI
    A(n) = sum(k=0, n\2, binomial(k, n - 2*k));
    a000931(n) = if(n==0, 1, if(n<3, 0, A(n - 3)));
    a(n) = a000931(n + 5)^2*a000931(n + 6); \\ Indranil Ghosh, Apr 26 2017
    
  • Python
    from sympy import binomial
    def A(n): return sum([binomial(k, n - 2*k) for k in range(int(n/2) + 1)])
    def a000931(n): return 1 if n==0 else 0 if n<3 else A(n - 3)
    def a(n): return a000931(n + 5)**2*a000931(n + 6) # Indranil Ghosh, Apr 26 2017

Formula

a(n) = A000931(n+5)^2*A000931(n+6).
a(n) = A100538(n+1) - A100538(n).