cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285573 Number of finite nonempty sets of pairwise indivisible divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 4, 3, 5, 2, 9, 2, 5, 5, 5, 2, 9, 2, 9, 5, 5, 2, 14, 3, 5, 4, 9, 2, 19, 2, 6, 5, 5, 5, 19, 2, 5, 5, 14, 2, 19, 2, 9, 9, 5, 2, 20, 3, 9, 5, 9, 2, 14, 5, 14, 5, 5, 2, 49, 2, 5, 9, 7, 5, 19, 2, 9, 5, 19, 2, 34, 2, 5, 9, 9, 5, 19, 2, 20, 5, 5, 2, 49, 5, 5, 5, 14, 2, 49, 5, 9, 5, 5, 5, 27, 2, 9, 9, 19
Offset: 1

Views

Author

Gus Wiseman, Apr 21 2017

Keywords

Comments

From Robert Israel, Apr 21 2017: (Start)
If n = p^k for prime p, a(n) = k+1.
If n = p^j*q^k for distinct primes p,q, a(n) = binomial(j+k+2,j+1)-1. (End)

Examples

			The a(12)=9 sets are: {1}, {2}, {3}, {4}, {6}, {12}, {2,3}, {3,4}, {4,6}.
		

Crossrefs

Programs

  • Maple
    g:= proc(S) local x, Sx; option remember;
       if nops(S) = 0 then return {{}} fi;
       x:= S[1];
       Sx:= subsop(1=NULL,S);
       procname(Sx) union map(t -> t union {x}, procname(remove(s -> s mod x = 0 or x mod s = 0, Sx)))
    end proc:
    f:= proc(n) local F,D;
      F:= ifactors(n)[2];
      D:= numtheory:-divisors(mul(ithprime(i)^F[i,2],i=1..nops(F)));
      nops(g(D)) - 1;
    end proc:
    map(f, [$1..100]); # Robert Israel, Apr 21 2017
  • Mathematica
    nn=50;
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Rest[stableSets[Divisors[n],Divisible]]],{n,1,nn}]