A285573 Number of finite nonempty sets of pairwise indivisible divisors of n.
1, 2, 2, 3, 2, 5, 2, 4, 3, 5, 2, 9, 2, 5, 5, 5, 2, 9, 2, 9, 5, 5, 2, 14, 3, 5, 4, 9, 2, 19, 2, 6, 5, 5, 5, 19, 2, 5, 5, 14, 2, 19, 2, 9, 9, 5, 2, 20, 3, 9, 5, 9, 2, 14, 5, 14, 5, 5, 2, 49, 2, 5, 9, 7, 5, 19, 2, 9, 5, 19, 2, 34, 2, 5, 9, 9, 5, 19, 2, 20, 5, 5, 2, 49, 5, 5, 5, 14, 2, 49, 5, 9, 5, 5, 5, 27, 2, 9, 9, 19
Offset: 1
Keywords
Examples
The a(12)=9 sets are: {1}, {2}, {3}, {4}, {6}, {12}, {2,3}, {3,4}, {4,6}.
Programs
-
Maple
g:= proc(S) local x, Sx; option remember; if nops(S) = 0 then return {{}} fi; x:= S[1]; Sx:= subsop(1=NULL,S); procname(Sx) union map(t -> t union {x}, procname(remove(s -> s mod x = 0 or x mod s = 0, Sx))) end proc: f:= proc(n) local F,D; F:= ifactors(n)[2]; D:= numtheory:-divisors(mul(ithprime(i)^F[i,2],i=1..nops(F))); nops(g(D)) - 1; end proc: map(f, [$1..100]); # Robert Israel, Apr 21 2017
-
Mathematica
nn=50; stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]]; Table[Length[Rest[stableSets[Divisors[n],Divisible]]],{n,1,nn}]
Comments