cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A294586 Expansion of Product_{k>=1} 1/(1 - k^2*x^k)^(k^2).

Original entry on oeis.org

1, 1, 17, 98, 514, 2435, 12752, 58849, 277362, 1243056, 5523734, 23889860, 102176581, 427458488, 1768064752, 7197695011, 28955246228, 114977761216, 451686925462, 1754581791860, 6749143188662, 25707194720502, 97041994691555, 363121143230292
Offset: 0

Views

Author

Seiichi Manyama, Nov 03 2017

Keywords

Crossrefs

Column k=2 of A294585.

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1 - k^2*x^k)^(k^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 11 2017 *)
    nmax = 30; s = 1 - x; Do[s *= Sum[Binomial[k^2, j]*(-1)^j*k^(2*j)*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 12 2017 *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1-k^2*x^k)^k^2))

Formula

From Vaclav Kotesovec, Nov 14 2017: (Start)
a(n) ~ c * 3^(2*n/3) * n^8, where
if mod(n,3)=0 then c = 350793443467906700358779160929996923840677857044\
13786172.61998576944425459411592809123023259309183199454386580509531344\
26216683391121761062030679551011342614958936988089343473390138...
if mod(n,3)=1 then c = 350793443467906700358779160929996923840677857044\
13786172.61998576943431618172412821798685989333734080090574886961583670\
65437558779530384541992249698997443314123905740649930258416583...
if mod(n,3)=2 then c = 350793443467906700358779160929996923840677857044\
13786172.61998576943586440772541471067224229278174424709431922476448338\
37991534958575385658058309282842532811502400165735702386411333...
In closed form, a(n) ~ ((Product_{k>=4} ((1 - k^2 / 3^(2*k/3))^(-k^2))) / ((1 - 1/3^(2/3)) * (1 - 4/3^(4/3))^4) + (Product_{k>=4} ((1 - (-1)^(2*k/3) * k^2 / 3^(2*k/3))^(-k^2))) / ((-1)^(2*n/3) * (1 + 4/3 * (-1/3)^(1/3))^4 * (1 - (-1/3)^(2/3))) + (Product_{k>=4} ((1 - (-(-1)^(1/3))^k * k^2 / 3^(2*k/3))^(-k^2))) / ((-(-1)^(1/3))^n * (1 + (-1)^(1/3) / 3^(2/3)) * (1 - 4*(-1)^(2/3) / 3^(4/3))^4)) * 3^(2*n/3) * n^8 / 793618560. - Vaclav Kotesovec, Nov 14 2017 (End)

A285737 Expansion of Product_{k>=1} (1 + k^2*x^k)^k.

Original entry on oeis.org

1, 1, 8, 35, 107, 421, 1312, 4474, 13622, 43977, 130473, 388025, 1146640, 3265446, 9352424, 26033637, 72144351, 196664848, 532768901, 1422725368, 3768251677, 9893857617, 25709347054, 66367179293, 169754459790, 431237516979, 1086813719408, 2722241654623
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 25 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[(1+k^2*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]

A294582 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 - j^k*x^j)^j.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 5, 6, 1, 1, 9, 14, 13, 1, 1, 17, 36, 42, 24, 1, 1, 33, 98, 148, 103, 48, 1, 1, 65, 276, 546, 489, 289, 86, 1, 1, 129, 794, 2068, 2467, 1959, 690, 160, 1, 1, 257, 2316, 7962, 12969, 14281, 6326, 1771, 282, 1, 1, 513, 6818, 30988, 70243
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2017

Keywords

Examples

			Square array begins:
    1,  1,   1,   1,    1, ...
    1,  1,   1,   1,    1, ...
    3,  5,   9,  17,   33, ...
    6, 14,  36,  98,  276, ...
   13, 42, 148, 546, 2068, ...
		

Crossrefs

Columns k=0..2 give A000219, A266941, A285674.
Rows n=0-1 give A000012.

Formula

A(0,k) = 1 and A(n,k) = (1/n) * Sum_{j=1..n} (Sum_{d|j} d^(2+k*j/d)) * A(n-j,k) for n > 0.
Showing 1-3 of 3 results.