cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A285691 a(1) = 2; a(n + 1) = smallest prime > a(n) such that a(n + 1) - a(n) is the product of six primes.

Original entry on oeis.org

2, 1217, 1361, 1601, 1697, 1913, 2129, 2273, 2417, 2633, 2729, 2953, 3049, 3209, 3433, 3529, 3593, 3833, 3929, 4073, 4217, 4441, 4657, 4721, 4817, 5153, 5297, 5393, 5717, 5813, 6029, 6173, 6269, 6829, 7069, 7213, 7309, 7549, 7789
Offset: 1

Views

Author

Zak Seidov, Apr 25 2017

Keywords

Comments

First differences: 1215, 144, 240, 96, 216, 216, 144, 144, 216, 96, 224, 96, 160, 224, 96, 64, 240, 96, 144, 144, ...

Crossrefs

Programs

  • Maple
    A[1]:= 2: p:= 2: n:= 1:
    while n < 60 do
        p:= nextprime(p);
        if numtheory:-bigomega(p-A[n]) = 6 then n:= n+1; A[n]:= p;
        fi
    od:
    seq(A[i],i=1..60); # Robert Israel, Nov 28 2019
  • Mathematica
    NestList[Module[{p = NextPrime@ #}, While[PrimeOmega[p - #] != 6, p = NextPrime@ p]; p] &, 2, 38] (* Michael De Vlieger, Apr 25 2017 *)

A285692 a(1) = 2; a(n + 1) = smallest prime > a(n) such that a(n + 1) - a(n) is the product of 7 primes.

Original entry on oeis.org

2, 9479, 9767, 10247, 10567, 11047, 11239, 11527, 11719, 12007, 12487, 12919, 13367, 13687, 13879, 14071, 14503, 14951, 15271, 15559, 15991, 16183, 16631, 16759, 17047, 17239, 17431, 17623, 17911, 18199, 18679, 19687, 20359, 20551, 20743, 21031, 21319, 21751, 21943
Offset: 1

Views

Author

Zak Seidov, Apr 25 2017

Keywords

Comments

First differences: 9477, 288, 480, 320, 480, 192, 288, 192, 288, 480, 432, 448, 320, 192, 192, 432, 448, 320, 288, 432,...

Crossrefs

Programs

  • Maple
    A:= Vector(100): A[1]:= 2:
    for n from 2 to 100 do
      p:= A[n-1];
      do
        p:= nextprime(p);
      until numtheory:-bigomega(p-A[n-1]) = 7;
      A[n]:= p;
    od:
    convert(A,list); # Robert Israel, Dec 28 2022
  • Mathematica
    NestList[Module[{p = NextPrime@ #}, While[PrimeOmega[p - #] != 7, p = NextPrime@ p]; p] &, 2, 38] (* Michael De Vlieger, Apr 25 2017 *)

A285693 a(1) = 2; a(n + 1) = smallest prime > a(n) such that a(n + 1) - a(n) is the product of 8 primes.

Original entry on oeis.org

2, 6563, 6947, 7331, 7907, 8291, 8867, 10163, 10739, 11699, 12659, 13043, 13619, 15731, 16691, 17987, 18371, 18947, 19843, 20483, 21059, 23003, 23899, 24763, 25147, 26107, 26683, 27067, 28027, 28283, 28859, 29243, 29819
Offset: 1

Views

Author

Zak Seidov, Apr 25 2017

Keywords

Comments

First differences: 6561, 384, 384, 576, 384, 576, 1296, 576, 960, 960, 384, 576, 2112,...

Crossrefs

Programs

  • Mathematica
    NestList[Module[{p = NextPrime@ #}, While[PrimeOmega[p - #] != 8, p = NextPrime@ p]; p] &, 2, 32] (* Michael De Vlieger, Apr 25 2017 *)

A285694 a(1) = 2; a(n + 1) = smallest prime > a(n) such that a(n + 1) - a(n) is the product of 10 primes.

Original entry on oeis.org

2, 59051, 62507, 64811, 66347, 67883, 71339, 73643, 81707, 83243, 87083, 89387, 91691, 95531, 99371, 100907, 104491, 110251, 115883, 119723, 121259, 126443, 127979, 136043, 139627, 141931, 143467, 145771, 148331
Offset: 1

Views

Author

Zak Seidov, Apr 25 2017

Keywords

Comments

First differences: 59049, 3456, 2304, 1536, 1536, 3456, 2304, 8064, 1536, 3840, 2304, 2304, ...

Crossrefs

Programs

  • Mathematica
    NestList[Module[{p = NextPrime@ #}, While[PrimeOmega[p - #] != 10, p = NextPrime@ p]; p] &, 2, 28] (* Michael De Vlieger, Apr 25 2017 *)
Showing 1-4 of 4 results.