A285701 a(n) = number of iterations x -> A064216(x) needed to reach a nonprime number when starting from n, a(2) = a(3) = 1.
0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Examples
For n=2, A064216(2) = 2, thus there is exactly one distinct prime that can be reached when iterating A064216 starting from 2, thus a(2) = 1. For n=19, A064216(19) = 31 (a prime), A064216(31) = 59 (a prime) and A064216(59) = 44 (not a prime), thus there are exactly three distinct primes that are encountered when iterating A064216 starting from 19 before a nonprime is reached, thus a(19) = 3 (the count includes also the starting prime 19).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; A064216(n) = A064989((2*n)-1); A285701(n) = if(!isprime(n),0,if((2==n)||(3==n),1,1+A285701(A064216(n))));
-
Scheme
(definec (A285701 n) (cond ((zero? (A010051 n)) 0) ((or (= 2 n) (= 3 n)) 1) (else (+ 1 (A285701 (A064216 n)))))) ;; Another version not requiring A064216 and A064989: (definec (A285701 n) (cond ((zero? (A010051 n)) 0) ((or (= 2 n) (= 3 n)) 1) ((zero? (A010051 (+ n n -1))) 1) (else (+ 1 (A285701 (A000040 (+ -1 (A000720 (+ n n -1)))))))))