A285710 Numbers n for which A000010(n) = A285699(n); positions of zeros in A285709.
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 16, 17, 19, 21, 23, 25, 27, 28, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 62, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 124, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 237
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..6672
Crossrefs
Programs
-
Mathematica
Flatten@ Position[#, 0] &@ Table[EulerPhi@ n - (n - If[n <= 2, n - 1, Module[{k = n - 2, e = Floor@ Log2@ n}, While[PowerMod[n, e, k] != 0, k--]; k]]), {n, 240}] (* Michael De Vlieger, Apr 26 2017 *)
-
Python
from sympy import divisors, totient from sympy.ntheory.factor_ import core def a007947(n): return max(i for i in divisors(n) if core(i) == i) def a079277(n): k=n - 1 while True: if a007947(k*n) == a007947(n): return k else: k-=1 def a285699(n): return 1 if n<2 else n - a079277(n) print([n for n in range(1, 301) if totient(n) == a285699(n)]) # Indranil Ghosh, Apr 26 2017
Comments