cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285720 Number of ways to write n as a sum of two unordered squarefree numbers so that their addition in base-2 does not produce carries.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 6, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 11, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 7, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 3, 0, 0, 0, 11, 0, 0, 0, 3, 0, 0, 0, 7, 0, 0, 0, 7, 0, 0, 0, 13, 0, 0, 0, 3, 0, 0, 0, 9, 0
Offset: 1

Views

Author

Antti Karttunen, May 02 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Abs[MoebiusMu[i] MoebiusMu[n - i]] Boole[BitXor[i, n - i] == n], {i, Floor[n/2]}], {n, 120}] (* Michael De Vlieger, May 03 2017 *)
  • Python
    from sympy import mobius
    def a003987(n, i): return i^(n - i) == n
    def a(n): return sum([abs(mobius(i)*mobius(n - i))*(1*a003987(n, i)) for i in range(1, n//2 + 1)])
    print([a(n) for n in range(1,121)]) # Indranil Ghosh, May 02 2017
  • Scheme
    (define (A285720 n) (let loop ((k (A013928 n)) (s 0)) (if (or (zero? k) (< (A005117 k) (- n (A005117 k)))) s (loop (- k 1) (+ s (if (and (= 1 (A008966 (- n (A005117 k)))) (zero? (A004198bi (A005117 k) (- n (A005117 k))))) 1 0)))))) ;; Where A004198bi implements bitwise-AND (A004198).
    

Formula

a(n) = Sum_{i=1..floor(n/2)} abs(mu(i)*mu(n-i))*[A003987(i,n-i) == n]. (Here [] is Iverson bracket, giving in this case 1 only if (i XOR (n-i)) is equal to n, and 0 otherwise. mu is Moebius mu function, A008683.)
a(n) <= A071068(n).
a(n) <= A088512(n).