cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285721 Square array read by antidiagonals: A(n,k) = number of steps in simple Euclidean algorithm for gcd(n,k) to reach the termination test n=k, read by antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

0, 1, 1, 2, 0, 2, 3, 2, 2, 3, 4, 1, 0, 1, 4, 5, 3, 3, 3, 3, 5, 6, 2, 3, 0, 3, 2, 6, 7, 4, 1, 4, 4, 1, 4, 7, 8, 3, 4, 2, 0, 2, 4, 3, 8, 9, 5, 4, 4, 5, 5, 4, 4, 5, 9, 10, 4, 2, 1, 4, 0, 4, 1, 2, 4, 10, 11, 6, 5, 5, 4, 6, 6, 4, 5, 5, 6, 11, 12, 5, 5, 3, 5, 3, 0, 3, 5, 3, 5, 5, 12, 13, 7, 3, 5, 1, 2, 7, 7, 2, 1, 5, 3, 7, 13, 14, 6, 6, 2, 6, 3, 5, 0, 5, 3, 6, 2, 6, 6, 14
Offset: 1

Views

Author

Antti Karttunen, May 03 2017

Keywords

Examples

			The top left 18 X 18 corner of the array:
   0, 1, 2, 3, 4, 5, 6, 7, 8,  9, 10, 11, 12, 13, 14, 15, 16, 17
   1, 0, 2, 1, 3, 2, 4, 3, 5,  4,  6,  5,  7,  6,  8,  7,  9,  8
   2, 2, 0, 3, 3, 1, 4, 4, 2,  5,  5,  3,  6,  6,  4,  7,  7,  5
   3, 1, 3, 0, 4, 2, 4, 1, 5,  3,  5,  2,  6,  4,  6,  3,  7,  5
   4, 3, 3, 4, 0, 5, 4, 4, 5,  1,  6,  5,  5,  6,  2,  7,  6,  6
   5, 2, 1, 2, 5, 0, 6, 3, 2,  3,  6,  1,  7,  4,  3,  4,  7,  2
   6, 4, 4, 4, 4, 6, 0, 7, 5,  5,  5,  5,  7,  1,  8,  6,  6,  6
   7, 3, 4, 1, 4, 3, 7, 0, 8,  4,  5,  2,  5,  4,  8,  1,  9,  5
   8, 5, 2, 5, 5, 2, 5, 8, 0,  9,  6,  3,  6,  6,  3,  6,  9,  1
   9, 4, 5, 3, 1, 3, 5, 4, 9,  0, 10,  5,  6,  4,  2,  4,  6,  5
  10, 6, 5, 5, 6, 6, 5, 5, 6, 10,  0, 11,  7,  6,  6,  7,  7,  6
  11, 5, 3, 2, 5, 1, 5, 2, 3,  5, 11,  0, 12,  6,  4,  3,  6,  2
  12, 7, 6, 6, 5, 7, 7, 5, 6,  6,  7, 12,  0, 13,  8,  7,  7,  6
  13, 6, 6, 4, 6, 4, 1, 4, 6,  4,  6,  6, 13,  0, 14,  7,  7,  5
  14, 8, 4, 6, 2, 3, 8, 8, 3,  2,  6,  4,  8, 14,  0, 15,  9,  5
  15, 7, 7, 3, 7, 4, 6, 1, 6,  4,  7,  3,  7,  7, 15,  0, 16,  8
  16, 9, 7, 7, 6, 7, 6, 9, 9,  6,  7,  6,  7,  7,  9, 16,  0, 17
  17, 8, 5, 5, 6, 2, 6, 5, 1,  5,  6,  2,  6,  5,  5,  8, 17,  0
		

Crossrefs

One less than A072030.
Row 2 & column 2: A028242 (but with starting offset 1).
Row 3 & column 3 (from zero onward) seems to be A226576.
Compare also to arrays A049834, A113881, A219158.

Programs

  • Python
    def A(n, k): return 0 if n==k else 1 + A(abs(n - k), min(n, k))
    for n in range(1, 21): print([A(n - k + 1, k) for k in range(1, n + 1)]) # Indranil Ghosh, May 03 2017
  • Scheme
    (define (A285721 n) (A285721bi (A002260 n) (A004736 n)))
    (define (A285721bi row col) (cond ((= row col) 0) ((> row col) (+ 1 (A285721bi (- row col) col))) (else (+ 1 (A285721bi row (- col row))))))
    ;; Alternatively:
    (define (A285721bi row col) (if (= row col) 0 (+ 1 (A285721bi (abs (- row col)) (min col row)))))
    ;; Another implementation, as an one-dimensional sequence:
    (definec (A285721 n) (if (zero? (A285722 n)) 0 (+ 1 (A285721 (A285722 n)))))
    

Formula

If n = k, then A(n,k) = 0, if n > k, then A(n,k) = 1 + A(n-k,k), otherwise [when n < k], A(n,k) = 1 + A(n,k-n).
Or alternatively, when n <> k, A(n,k) = 1 + A(abs(n-k),min(n,k)).
A(n,k) = A072030(n,k)-1.
As an one-dimensional sequence:
a(n) = 0 if A285722(n) = 0, otherwise a(n) = 1 + a(A285722(n)). [Here A285722 is also used as an one-dimensional sequence.]