A285767 Cyclops octagonal numbers: a(n) = n*(3*n-2) with one "zero" digit in the middle.
0, 408, 11041, 18096, 22016, 23056, 28033, 38081, 56033, 61061, 1140833, 1170625, 1250656, 1410416, 1460216, 1540833, 2120161, 2130261, 2140385, 2150533, 2310896, 2390561, 2460696, 2520833, 2570576, 2780181, 2920533, 3230256, 3280256, 3490565, 3660865, 3680776
Offset: 1
Examples
For n = 12; x(12) = 12*(3*12 - 2) = 408 that is 12th octagonal number with one zero digit in the middle, hence appears in the sequence. For n = 61; x(61) = 61*(3*61 - 2) = 11041 that is 61st octagonal number with one zero digit in the middle, hence appears in the sequence.
Programs
-
Maple
iscyclops:= proc(n) local L,t; t:= ilog10(n); if t::odd then return false fi; L:= convert(n,base,10); L[1+t/2] = 0 and numboccur(0,L) = 1 end proc: iscyclops(0):= true: select(iscyclops, [seq(n*(3*n-2),n=0..1000)]);
-
Mathematica
Select[Table[n (3 n - 2), {n, 0, 1110}], And[OddQ@ Length@ #, Count[#, 0] == 1, Take[#, {Ceiling[Length[#]/2]}] == {0}] &@ IntegerDigits@ # &] (* Michael De Vlieger, Apr 26 2017 *)
Comments