A285784 Possible nonprime residues of k > p# modulo p# for some primorial p# in A002110.
1, 121, 143, 169, 187, 209, 221, 247, 289, 299, 323, 361, 377, 391, 403, 437, 481, 493, 527, 529, 533, 551, 559, 589, 611, 629, 667, 689, 697, 703, 713, 731, 767, 779, 793, 799, 817, 841, 851, 871, 893, 899, 901, 923, 943, 949, 961, 989, 1003, 1007, 1027, 1037, 1073, 1079, 1081
Offset: 1
Keywords
Examples
Primorial(2) = 2*3 = 6 has two totatives (1 and 5), primorial(3) = 2*3*5 = 30 has eight totatives (1,7,11,13,17,19,23,29), etc. Taking the union of these lists and removing the primes gives the sequence.
Links
- Jamie Morken, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
MapIndexed[Select[Range @@ #1, Function[k, And[If[First@ #2 == 1, ! PrimeQ@ k, CompositeQ@ k > 1], CoprimeQ[Last@ #1, k]]]] &, Partition[FoldList[#1 #2 &, 1, Prime@ Range@ 5], 2, 1]] // Flatten (* Michael De Vlieger, May 24 2017 *)
-
PARI
select( n->!isprime(n), setunion((S(p,M)=Set(primes([1,p*M])%M))(11,210), S(13,2310))) \\ M. F. Hasler, Mar 25 2019
Extensions
Edited by N. J. A. Sloane, May 01 2017
Incorrect definition replaced and more terms added by M. F. Hasler, Mar 25 2019
Comments