cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A287917 Number of distinct primorials A002110(k) > A285784(n) such that the primorials are coprime to A285784(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 3, 1, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 1, 2, 4, 1, 2, 3, 4, 2, 1, 3, 1, 2, 3, 5, 4, 1, 3, 5, 2, 1, 4, 1, 6, 4, 2, 3, 1, 2, 5, 1, 4, 3, 2, 6, 1, 3, 5, 2, 4, 2, 5, 1, 6, 3, 1, 6, 1, 2, 3, 4, 5, 7, 3, 1, 4, 2, 1, 6, 1, 3, 2, 7, 5, 4
Offset: 2

Views

Author

Jamie Morken and Michael De Vlieger, Jun 08 2017

Keywords

Comments

Terms of A285784 that have a(n) = 1 appear in A287390.
Terms of A285784 that have a(n) > 1 appear in A287391.
From Michael De Vlieger, Jun 09 2017: (Start)
Let primorial p_n# = A002110(n) and let m be a nonzero positive number called a totative such that gcd(t, p_n#) = 1. This sequence concerns nonprime m. A285784 is the sequence that lists unique nonprime totatives m of primorials p_n#.
For A285784(1), a(n) = infinity, since 1 is the empty product and a totative of (i.e., coprime to) all numbers. Hence the offset of a(n) is 2 and for this reason hereinafter we only consider composite totatives m.
Consider the composite totative m in A285784. For a given composite term in A285784, there is a least primorial p_a# to which m is coprime. Such m < p_a# are products of prime totatives q > p_a, the gpf of p_a#. Therefore m "appears" when there are prime totatives q < sqrt(p_a#). The smallest a for which we have this condition is a = 4, as q = 11 is less than sqrt(210). For the same reason the first composite term of A285784 is 11^2 = 121.
For n >= 2, m is coprime to a finite range of primorials p_a# .. p_b#. If m is coprime to p_b#, then it must be coprime to all primorials p_a# .. p_b# by the definition of primorial. m is no longer coprime to p_(b+1)# since at least one of its prime divisors p_(b+1) also divides p_(b+1)#. This sequence gives the range b - a + 1.
To generate data that includes all the terms of A285784 less than a limit x, we can write a while statement that operates so long as there is at least 1 totative m < x of p_n#. Since primorial p_n# is the product of the smallest n primes, fewer numbers less than x are coprime to p_n# as n increases, until exhaustion. Thus we can produce a list of unique m < x (i.e., terms of A285784 less than x) for relatively large primorials p_n#. Then we can count the instances of terms of A285784 for a list of lists of totatives m < x for primorials p_1# .. p_n# and obtain certainty about the number of instances of terms of A285784.
First position of values of a(n): {2, 4, 12, 20, 38, 47, 76, 96, 111, 139, 228, 241, 300, 339, 363, 434, 482, 566, 689, 752, 790, 862, 902, 973, 1264, 1361, 1506, 1562, 1816, ...}
Terms of A285784 that set records in a(n): {121, 169, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, ...}
(End)

Examples

			The sequence starts:
   n  A285784(n)  a(n)
   2      121     1
   3      143     1
   4      169     2
   5      187     1
   6      209     1
   7      221     1
   8      247     1
   9      289     2
  10      299     1
  11      323     2
  12      361     3
  13      377     1
  14      391     2
  15      403     1
  16      437     3
  17      481     1
  18      493     2   ...
		

Crossrefs

Programs

  • Mathematica
    Block[{nn = 1600, k = 1, P = 2, a}, a = Most@ Reap[While[Nand[k > 3, Length@ Sow@ Rest@ Select[Range[Min[P, nn]], And[! PrimeQ@ #, CoprimeQ[#, P]] &] == 0], k++; P *= Prime@ k]][[-1, 1]]; Function[b, Map[Count[b, #] &, Union@ b]]@ Flatten@ a] (* Michael De Vlieger, Jun 09 2017 *)

Extensions

Edited by Michael De Vlieger, Jun 09 2017

A286941 Irregular triangle read by rows: the n-th row corresponds to the totatives of the n-th primorial, A002110(n).

Original entry on oeis.org

1, 1, 5, 1, 7, 11, 13, 17, 19, 23, 29, 1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209
Offset: 1

Views

Author

Jamie Morken and Michael De Vlieger, May 16 2017

Keywords

Comments

Values in row n of a(n) are those of row n of A286942 complement those of row n of A279864.
From Michael De Vlieger, May 18 2017: (Start)
Numbers t < p_n# such that gcd(t, p_n#) = 0, where p_n# = A002110(n).
Numbers in the reduced residue system of A002110(n).
A005867(n) = number of terms of a(n) in row n; local minimum of Euler's totient function.
A048862(n) = number of primes in row n of a(n).
A048863(n) = number of nonprimes in row n of a(n).
Since 1 is coprime to all n, it delimits the rows of a(n).
The prime A000040(n+1) is the second term in row n since it is the smallest prime coprime to A002110(n) by definition of primorial.
The smallest composite in row n is A001248(n+1) = A000040(n+1)^2.
The Kummer numbers A057588(n) = A002110(n) - 1 are the last terms of rows n, since (n - 1) is less than and coprime to all positive n. (End)

Examples

			The triangle starts
1;
1, 5;
1, 7, 11, 13, 17, 19, 23, 29;
1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209;
		

Crossrefs

Cf. A285784 (nonprimes that appear), A335334 (row sums).

Programs

  • Mathematica
    Table[Function[P, Select[Range@ P, CoprimeQ[#, P] &]]@ Product[Prime@ i, {i, n}], {n, 4}] // Flatten (* Michael De Vlieger, May 18 2017 *)
  • PARI
    row(n) = my(P=factorback(primes(n))); select(x->(gcd(x, P) == 1), [1..P]); \\ Michel Marcus, Jun 02 2020

Extensions

More terms from Michael De Vlieger, May 18 2017

A287391 Nonprimes k that are a totative of more than one primorial p_n# = A002110(n).

Original entry on oeis.org

1, 169, 289, 323, 361, 391, 437, 493, 527, 529, 551, 589, 629, 667, 697, 703, 713, 731, 779, 799, 817, 841, 851, 893, 899, 901, 943, 961, 989, 1003, 1007, 1037, 1073, 1081, 1121, 1139, 1147, 1159, 1189, 1207, 1219, 1241, 1247, 1271, 1273, 1333, 1343, 1349, 1357, 1363, 1369, 1387, 1403, 1411
Offset: 1

Views

Author

Jamie Morken, May 24 2017

Keywords

Comments

From Michael De Vlieger, May 24 2017; corrected and edited by M. F. Hasler, Oct 04 2018: (Start)
Let p_n# = A002110(n). This sequence lists 1 and composite numbers p_n# < k < p_(n+1)# for all positive n such that least_prime_factor(k) > p_(n+2).
Subset of A285784.
If considered as an irregular number triangle T(n,k), row lengths n < A048863(n).
(End)

Examples

			From _Michael De Vlieger_, May 24 2017: (Start)
a(1) = 1 since 1 is coprime to all numbers.
169 is in the sequence since it is coprime to p_4# = 210 and p_5# = 2310 yet less than both, however prime(6) = 13 divides 169 thus it is not a totative of p_6# or any larger primorial. (End)
		

Crossrefs

Programs

  • Mathematica
    MapIndexed[Select[Range @@ #1, Function[k, Function[f, And[If[First@ #2 == 1, k == 1 || Total[f[[All, -1]]] > 1, Total[f[[All, -1]]] > 1], CoprimeQ[Last@ #1, k], f[[1, 1]] != Prime[First@ #2 + 1]]]@ FactorInteger[k]]] &, Partition[FoldList[#1 #2 &, 1, Prime@ Range@ 5], 2, 1]] // Flatten (* Michael De Vlieger, May 24 2017 *)
  • PARI
    is(n,f=if(n>1,factor(n)[,1][1],4),P=1)={n!=f&&forprime(p=2,precprime(f-1)-1,n%p||return;(P*=p)>n&&return(1))} \\ M. F. Hasler, Oct 04 2018

Formula

For 2 < n <= 108, a(n) = A008367(n-2); for 109 <= n < 120, a(n) = A008367(n). - M. F. Hasler, Oct 04 2018

Extensions

Edited by Michael De Vlieger, May 24 2017

A283425 Difference between A002110(n) and the largest semiprime b*c < A002110(n) where b is prime(n+1).

Original entry on oeis.org

1, 61, 127, 113, 199, 191, 701, 233, 457, 241, 3701, 557, 3673, 421, 499, 947, 2437, 4349, 8513, 4951, 3229, 937, 4813, 881, 6863, 1499, 2803, 12497, 2029, 88493, 5857, 10853, 28627, 9551, 43691, 85049, 15973, 75209, 4933, 5009, 22613, 14731, 74489, 16993, 90887, 307, 3581, 15083, 12893, 71317, 3583, 1907
Offset: 4

Views

Author

Jamie Morken, May 14 2017

Keywords

Comments

Only these 6 values are not prime numbers up to n=499: 1, 590221, 2807627, 5862793, 39109337, 13116283.
All a(n) are totatives of A002110(n); thus if a(n) < b^2 in the semiprime b*c then a(n) is prime, otherwise a(n) is either prime or semiprime.
The number c is prevprime(p_n# / p_(n+1)), where p_n# = A002110(n). Thus semiprime b*c = A000040(n+1)*prevprime(A002110(n) / A000040(n+1)), and a(n) = A002110(n) - A000040(n+1)*prevprime(A002110(n)/A000040(n+1)). - Michael De Vlieger, May 15 2017

Examples

			Sequence starts at n=4.
For n=5, a(n)=61.
Pn(5): a=2310, b=13, c=173, d=61.
I.e., d = a - (b*c) = 2310 - (13*173) = 2310 - 2249 = 61.
Pn(4): a=210, b=11, c=19, d=1,
Pn(5): a=2310, b=13, c=173, d=61,
Pn(6): a=30030, b=17, c=1759, d=127,
Pn(7): a=510510, b=19, c=26863, d=113,
Pn(8): a=9699690, b=23, c=421717, d=199,
Pn(9): a=223092870, b=29, c=7692851, d=191.
a(n) = a - (b*c) where a(n) has a high probability of being prime, and b*c is the largest semiprime below A002110(n) where b is prime (n+1).
		

Crossrefs

Programs

  • Mathematica
    Table[Function[{P, q}, P - NextPrime[P/q, -1] q] @@ {Product[Prime@ i, {i, n}], Prime[n + 1]}, {n, 4, 55}] (* Michael De Vlieger, May 15 2017 *)

Formula

a(n) = A002110(n) - A000040(n+1)*prevprime(A002110(n)/A000040(n+1)) for n >= 4. - Michael De Vlieger, May 15 2017

A287390 Nonprimes k that are a totative of only one primorial P in A002110.

Original entry on oeis.org

121, 143, 187, 209, 221, 247, 299, 377, 403, 481, 533, 559, 611, 689, 767, 793, 871, 923, 949, 1027, 1079, 1157, 1261, 1313, 1339, 1391, 1417, 1469, 1651, 1703, 1781, 1807, 1937, 1963, 2041, 2119, 2171, 2197, 2249, 2329, 2363, 2533, 2567, 2669, 2771, 2839
Offset: 1

Views

Author

Jamie Morken, May 24 2017

Keywords

Comments

From Michael De Vlieger, May 24 2017: (Start)
Let p_n# = A002110(n). Composite numbers p_n# < k < p_(n+1)# such that gcd(k,p_(n+1)) = 1 and whose minimum prime divisor is p_(n+2).
Subsequence of A285784.
The sequence can be thought of as an irregular triangle T(n,k) with the first terms appearing for n = 3. Row lengths of T(n,k) < A048863(n).
Many of the terms are semiprimes p_(n+2)*q with p_(n+2) < q < p_pi(p_(n+1)#), where pi(x) = A000720(x).
The smallest square in a(n) is 121 = 11^2. The smallest p^m for m = {2, 3, 4, 5} is {121, 2197, 130321, 643343}, which are {11^2, 13^3, 19^4, 23^5} respectively.
(End)

Examples

			From _Michael De Vlieger_, May 24 2017: (Start)
The numbers 121, 143, 187, and 209 are in the sequence because these are nonprimes greater than p_3# = 30 but less than p_4# = 210 with minimum prime divisor p_5 = 11.
The number 169 is not in the sequence because, although it falls between 30 and 210, it is coprime to 210 and to 2310 and thus is a totative of both these primorials.
(End)
		

Crossrefs

Programs

  • Mathematica
    MapIndexed[Select[Range @@ #1, Function[k, Function[f, And[Total[f[[All, -1]]] > 1, CoprimeQ[Last@ #1, k], f[[1, 1]] == Prime[First@ #2 + 1]]]@ FactorInteger[k]]] &, Partition[FoldList[#1 #2 &, 1, Prime@ Range@ 6], 2, 1]] // Flatten (* Michael De Vlieger, May 24 2017 *)

A287918 Union of nonprime 1 <= t <= m for m in A036913, with gcd(t,m) = 1.

Original entry on oeis.org

1, 25, 35, 49, 55, 65, 77, 85, 91, 95, 115, 119, 121, 125, 133, 143, 145, 155, 161, 169, 185, 187, 203, 205, 209, 215, 217, 221, 235, 247, 253, 259, 265, 287, 289, 295, 299, 301, 305, 319, 323, 325, 329, 335, 341, 343, 355, 361, 365, 371, 377, 391, 395, 403
Offset: 1

Views

Author

Jamie Morken and Michael De Vlieger, Jun 11 2017

Keywords

Comments

List of nonprime totatives t of m for m in A036913.
Nonprime 1 is coprime to all numbers, thus a(1) = 1.
The integers {175, 245, 275} are absent, distinguishing this sequence from A038509 and A067793. These terms have factors 5^2 * 7, 5 * 7^2, 5^2 * 11. Only the terms in positions {2, 3, 4, 6, 8, 11, 18} of A036913 (i.e., {6, 12, 18, 42, 66, 126, 462}) are larger and coprime to 5. Of these only 462 is greater than these three terms, however 462 is divisible by 7 and 11. Thus {175, 245, 275} are not terms.
Squared primes q^2 for q >= 5 appear in the sequence at positions {2, 4, 13, 20, 35, 48, 71, 107, 123, 173, ...}. These are coprime to and smaller than {42, 60, 126, 210, 330, 420, ...} at indices {6, 7, 11, 13, 16, 17, 20, 25, 25, 28, 30, 30, 31, 40, 33, 35, ...} in A036913.

Examples

			From _Michael De Vlieger_, Jun 14 2017: (Start)
List of nonprime totatives 1 <= t <= m for m <= 210 in A036913:
    m: 1 <= t <= m
    2: 1;
    6: 1;
   12: 1;
   18: 1;
   30: 1;
   42: 1, 25;
   60: 1, 49;
   66: 1, 25, 35, 49, 65;
   90: 1, 49, 77;
  120: 1, 49, 77, 91, 119;
  126: 1, 25, 55, 65, 85, 95, 115, 121, 125;
  150: 1, 49, 77, 91, 119, 121, 133, 143;
  210: 1, 121, 143, 169, 187, 209;
       ...
Indices of A036913 of first and last terms m such that gcd(a(n),m)=1:
   n   a(n)   Freq.  First   Last
  -------------------------------
   1      1     oo       1     oo
   2     25      4       6     18
   3     35      1       8      8
   4     49     14       7     40
   5     55      1      11     11
   6     65      3       8     18
   7     77      8       9     24
   8     85      2      11     18
   9     91     11      10     40
  10     95      2      11     18
  11    115      2      11     18
  12    119      9      10     27
  13    121     75      11    308
  14    125      2      11     18
  15    133     10      12     40
  16    143     36      12    107
  17    145      1      18     18
  18    155      1      18     18
  19    161      8      14     40
  20    169     96      13    248
  ...
Positions of squared primes q^2 in a(n):
        q^2           q
    n   a(n)  sqrt(a(n))     k    m = A036913(k)
  ----------------------------------------------
    2     25          5      6       42
    4     49          7      7       60
   13    121         11     11      126
   20    169         13     13      210
   35    289         17     16      330
   48    361         19     17      420
   71    529         23     20      630
  107    841         29     25     1050
  123    961         31     25     1050
  173   1369         37     28     1470
  210   1681         41     30     1890
  234   1849         43     30     1890
  283   2209         47     31     2310
  303   2401         49     40     5610
  359   2809         53     33     2940
  456   3481         59     35     3570
  486   3721         61     36     3990
  598   4489         67     37     4620
  676   5041         71     39     5460
  721   5329         73     39     5460
  ...
(End)
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 403, s = Union@FoldList[Max, Values[#][[All, -1]]] &@ KeySort@ PositionIndex@ EulerPhi@ Range[Product[Prime@ i, {i, 8}]]}, Union@ Flatten@ Map[Function[n, Select[Range@ Min[n, nn], And[CoprimeQ[#, n], ! PrimeQ@ #] &]], s]] (* Michael De Vlieger, Jun 14 2017 *)
Showing 1-6 of 6 results.