A285787 Least number k such that the absolute value of the difference between the number of prime factors, with multiplicity, of k and k-1 is equal to n.
3, 2, 8, 17, 32, 97, 128, 257, 769, 2048, 4097, 6144, 8192, 40961, 73728, 65537, 131072, 524289, 524288, 3145728, 6291456, 8388608, 18874368, 50331648, 113246209, 167772161, 268435457, 805306368, 1610612737, 2147483649, 2147483648, 17179869184, 21474836480
Offset: 0
Keywords
Examples
a(9) = 2048 because 2047 = 23 * 89, 2048 = 2^11 and 11 - 2 = 9.
Links
- Giovanni Resta, Table of n, a(n) for n = 0..40
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,k,v; v:=array(0..100); for k from 0 to 100 do v[k]:=0; od; a:=0; for k from 2 to q do b:=bigomega(k); if v[abs(b-a)]=0 then v[abs(b-a)]:=k; fi; a:=b; od; k:=0; while v[k]>0 do print(v[k]); k:=k+1; od; print(); end: P(10^6);
-
Mathematica
s = PrimeOmega@ Range[10^6]; 1 + First /@ Values@ KeySort@ PositionIndex@ Flatten@ Map[Abs@ Differences@ # &, Partition[s, 2, 1]] (* Michael De Vlieger, Apr 26 2017, Version 10 *)
Extensions
a(24)-a(32) from Giovanni Resta, Apr 26 2017
Comments