A285824 Number T(n,k) of ordered set partitions of [n] into k blocks such that equal-sized blocks are ordered with increasing least elements; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 1, 6, 1, 0, 1, 11, 18, 1, 0, 1, 30, 75, 40, 1, 0, 1, 52, 420, 350, 75, 1, 0, 1, 126, 1218, 3080, 1225, 126, 1, 0, 1, 219, 4242, 17129, 15750, 3486, 196, 1, 0, 1, 510, 14563, 82488, 152355, 63756, 8526, 288, 1, 0, 1, 896, 42930, 464650, 1049895, 954387, 217560, 18600, 405, 1
Offset: 0
Examples
T(3,1) = 1: 123. T(3,2) = 6: 1|23, 23|1, 2|13, 13|2, 3|12, 12|3. T(3,3) = 1: 1|2|3. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 1, 6, 1; 0, 1, 11, 18, 1; 0, 1, 30, 75, 40, 1; 0, 1, 52, 420, 350, 75, 1; 0, 1, 126, 1218, 3080, 1225, 126, 1; 0, 1, 219, 4242, 17129, 15750, 3486, 196, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Maple
b:= proc(n, i, p) option remember; expand(`if`(n=0 or i=1, (p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*x^j*combinat [multinomial](n, n-i*j, i$j)/j!^2, j=0..n/i))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)): seq(T(n), n=0..12);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, p_] := b[n, i, p] = Expand[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n-i*j, i-1, p+j]*x^j*multinomial[n, Join[{n-i*j}, Table[i, j]]]/ j!^2, {j, 0, n/i}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n, 0]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 28 2018, after Alois P. Heinz *)