cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285853 Number of permutations of [n] with two ordered cycles such that equal-sized cycles are ordered with increasing least elements.

Original entry on oeis.org

1, 6, 19, 100, 508, 3528, 24876, 219168, 1980576, 21257280, 234434880, 2972885760, 38715943680, 566931294720, 8514866707200, 141468564787200, 2407290355814400, 44753976117043200, 850965783594393600, 17505896073523200000, 367844990453821440000
Offset: 2

Views

Author

Alois P. Heinz, Apr 27 2017

Keywords

Examples

			a(2) = 1: (1)(2).
a(3) = 6: (1)(23), (23)(1), (2)(13), (13)(2), (3)(12), (12)(3).
a(4) = 19: (123)(4), (4)(123), (132)(4), (4)(132), (124)(3), (3)(124), (142)(3), (3)(142), (134)(2), (2)(134), (143)(2), (2)(143), (1)(234), (234)(1), (1)(243), (243)(1),  (12)(34), (13)(24), (14)(23).
		

Crossrefs

Column k=2 of A285849.
Cf. A285917.

Programs

  • Maple
    a:= n-> 2*add(binomial(n, k)*(k-1)!*(n-k-1)!, k=1..n/2)-
            `if`(n::even, 3/2*binomial(n, n/2)*(n/2-1)!^2, 0):
    seq(a(n), n=2..25);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<5, [0, 1, 6, 19][n],
         ((2*n-1)*(n-1)*a(n-1)+(n-2)*(2*n^2-5*n-1)*a(n-2)
          -(n-3)^2*((2*n^2-5*n+4)*a(n-3)+(n-4)^2*a(n-4)))/(2*n))
        end:
    seq(a(n), n=2..25);
  • Mathematica
    Table[(n-1)!*(2*HarmonicNumber[n] - (3 + (-1)^n)/n), {n, 2, 25}] (* Vaclav Kotesovec, Apr 29 2017 *)