A285858 Number of permutations of [n] with seven ordered cycles such that equal-sized cycles are ordered with increasing least elements.
1, 196, 9114, 330750, 10094931, 234138366, 5932023097, 142349568361, 3233779086538, 74147737383720, 1785843031638120, 42966579274786440, 1047584220405271360, 26222209747260881200, 671966452779878874800, 17944599541172975286000, 485789620369911667323360
Offset: 7
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 7..450
- Wikipedia, Permutation
Programs
-
Maple
b:= proc(n, i, p) option remember; series(`if`(n=0 or i=1, (p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat [multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)), x, 8) end: a:= n-> coeff(b(n$2, 0), x, 7): seq(a(n), n=7..25);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, p_] := b[n, i, p] = Series[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]], {x, 0, 8}]; a[n_] := Coefficient[b[n, n, 0], x, 7]; Table[a[n], {n, 7, 25}] (* Jean-François Alcover, May 30 2018, from Maple *)