cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285889 The smaller of the lexicographically least pair (x, y) such that 0 < x < y and sigma(x) = sigma(y) = n + x + y.

Original entry on oeis.org

220, 48, 174, 390, 102, 280, 160, 500, 66, 132, 54, 24280, 992, 560, 140, 168, 60, 10360, 1120, 1232, 198, 210, 132, 2170, 520, 1520, 96, 168, 330, 732, 60, 4424, 270, 540, 144, 1000, 1484, 4080, 220, 840, 1144, 16500, 1988, 5456, 210, 528, 150, 4158, 1180, 12236
Offset: 0

Views

Author

Paolo P. Lava, Apr 28 2017

Keywords

Comments

In the first 1000 terms the most repeated number is 840 with 15 occurrences.

Examples

			a(0) = 220: sigma(220) = sigma(284) = 220 + 284 = 504;
a(1) = 48: sigma(48) = sigma(75) = 48 + 75 + 1 = 124;
a(2) = 174: sigma(174) = sigma(184) = 174 + 184 + 2 = 360.
		

Crossrefs

See first terms of A002025 and A005276.

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,k,n; for n from 0 to q do for k from 1 to q do
    a:=sigma(k)-k-n; b:=sigma(a)-a-n; if a>0 and b=k and a<>b then print(k); break;
    fi; od; od; end: P(10^9);
  • Mathematica
    Table[m = 1; While[MissingQ@ Set[k, SelectFirst[Range[m - 1], DivisorSigma[1, m] == DivisorSigma[1, #] == m + # + n &]], m++]; {k, m}, {n, 0, 10}][[All, 1]] (* Version 10.2, or *)
    Do[m = 1; While[Set[k, Module[{k = 1}, While[! Xor[DivisorSigma[1, m] == DivisorSigma[1, k] == m + k + n, k >= m], k++]; k]] >= m, m++]; Print@ k, {n, 0, 10}] (* Michael De Vlieger, Apr 28 2017 *)
  • PARI
    getfirstterms(n)={my(L:list,S:list,k:small,t);L=List();S=List([1,3]);k=0;forstep(i=3,+oo,1,listput(S,sigma(i));forvec(j=[[2,i],[2,i]],t=vecsum(j)+k;if((S[j[1]]==t)&&(t==S[j[2]]),listput(L,j[1]);if(k==n,break(2),k++)),2));return(Vec(L))} \\ R. J. Cano, May 03 2017