cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285898 Triangle read by row: T(n,k) = number of partitions of n into exactly k consecutive parts (1 <= k <= n).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol and N. J. A. Sloane, Apr 28 2017

Keywords

Comments

To partition n into k parts, we see if m exists such that m + (m + 1) + ... + (m + k - 1) = k*m + binomial(k, 2) = n exists. a(n) = 1 if and only if (n - binomial(k, 2)) / k is an integer and larger than 0. - David A. Corneth, Apr 28 2017
It appears that this a full version of the irregular triangle A237048. - Omar E. Pol, Apr 28 2017
The value of a(n) can never exceed 1, since that would imply the existence of distinct equal-length ranges of consecutive integers that add up to the same number, which is impossible. - Sidney Cadot, Jan 22 2023

Examples

			Triangle begins:
1;
1, 0;
1, 1, 0;
1, 0, 0, 0;
1, 1, 0, 0, 0;
1, 0, 1, 0, 0, 0;
1, 1, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0, 0;
1, 1, 1, 0, 0, 0, 0, 0, 0;
1, 0, 0, 1, 0, 0, 0, 0, 0, 0;
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0;
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0;
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
...
For n = 15 there are four partitions of 15 into consecutive parts: [15], [8, 7], [6, 5, 4] and [5, 4, 3, 2, 1]. These partitions are formed by 1, 2, 3 and 5 consecutive parts respectively, so the 15th row of the triangle is [1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].
		

Crossrefs

Programs

  • Maple
    A285898 := proc(n)
        corn := (n-binomial(k,2))/k ;
        if type(corn,'integer') then
            if corn > 0 then
                1 ;
            else
                0;
            end if;
        else
            0 ;
        end if;
    end proc: # R. J. Mathar, Apr 30 2017
  • Mathematica
    Table[Function[t, Function[s, ReplacePart[s, Map[# -> 1 &, t]]]@ ConstantArray[0, n]]@ Map[Length, Select[IntegerPartitions@ n, Length@ # == 1 || Union@ Differences@ # == {-1} &]], {n, 15}] // Flatten (* Michael De Vlieger, Apr 28 2017 *)
  • PARI
    T(n, k) = n-=binomial(k, 2); if(n>0,n%k==0) \\ David A. Corneth, Apr 28 2017
    
  • Python
    from sympy import binomial
    def T(n, k):
        n=n - binomial(k, 2)
        if n>0:
            return 1 if n%k==0 else 0
        return 0
    for n in range(1, 21): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Apr 28 2017

Formula

A000203(n) = Sum_{k=1..n} (-1)^(k-1) * ((Sum_{j=k..n} T(j,k))^2 - (Sum_{j=k..n} T(j-1,k))^2), assuming that T(k-1,k) = 0. - Omar E. Pol, Oct 10 2018