A285898 Triangle read by row: T(n,k) = number of partitions of n into exactly k consecutive parts (1 <= k <= n).
1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
Triangle begins: 1; 1, 0; 1, 1, 0; 1, 0, 0, 0; 1, 1, 0, 0, 0; 1, 0, 1, 0, 0, 0; 1, 1, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0; 1, 1, 1, 0, 0, 0, 0, 0, 0; 1, 0, 0, 1, 0, 0, 0, 0, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; ... For n = 15 there are four partitions of 15 into consecutive parts: [15], [8, 7], [6, 5, 4] and [5, 4, 3, 2, 1]. These partitions are formed by 1, 2, 3 and 5 consecutive parts respectively, so the 15th row of the triangle is [1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].
Crossrefs
Programs
-
Maple
A285898 := proc(n) corn := (n-binomial(k,2))/k ; if type(corn,'integer') then if corn > 0 then 1 ; else 0; end if; else 0 ; end if; end proc: # R. J. Mathar, Apr 30 2017
-
Mathematica
Table[Function[t, Function[s, ReplacePart[s, Map[# -> 1 &, t]]]@ ConstantArray[0, n]]@ Map[Length, Select[IntegerPartitions@ n, Length@ # == 1 || Union@ Differences@ # == {-1} &]], {n, 15}] // Flatten (* Michael De Vlieger, Apr 28 2017 *)
-
PARI
T(n, k) = n-=binomial(k, 2); if(n>0,n%k==0) \\ David A. Corneth, Apr 28 2017
-
Python
from sympy import binomial def T(n, k): n=n - binomial(k, 2) if n>0: return 1 if n%k==0 else 0 return 0 for n in range(1, 21): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Apr 28 2017
Formula
A000203(n) = Sum_{k=1..n} (-1)^(k-1) * ((Sum_{j=k..n} T(j,k))^2 - (Sum_{j=k..n} T(j-1,k))^2), assuming that T(k-1,k) = 0. - Omar E. Pol, Oct 10 2018
Comments