cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285903 G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = 1/(1 - x/(1 - x^2/(1 - x^3/(1 - x^4/(1 - ...))))).

Original entry on oeis.org

1, 0, 1, 2, 4, 7, 14, 23, 43, 73, 134, 223, 405, 689, 1216, 2094, 3678, 6333, 11080, 19152, 33363, 57798, 100549, 174262, 302898, 525328, 912448, 1583069, 2748892, 4769842, 8281087, 14371045, 24946819, 43295806, 75153267, 130434130, 226401111, 392944875, 682038592, 1183770424, 2054659668, 3566162246
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 28 2017

Keywords

Examples

			G.f.: 1 + x/(1 - x) + x^3/(1 - x^3) + 2*x^4/(1 - x^4) + 4*x^5/(1 - x^5) + ... = 1/(1 - x/(1 - x^2/(1 - x^3/(1 - x^4/(1 - ...))))).
		

Crossrefs

Programs

  • Mathematica
    nn = 42; f[x_] := 1 + Sum[a[n] x^n/(1 - x^n), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1/(1 + ContinuedFractionK[-x^n, 1, {n, 1, nn}]), {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten

Formula

G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = (Sum_{n>=0} (-1)^n*x^(n*(n+1)) /Product_{k=1..n} (1 - x^k)) / (Sum_{n>=0} (-1)^n*x^(n^2)/Product_{k=1..n} (1 - x^k)).
Sum_{d|n} a(d) = A005169(n) for n > 0.
From Vaclav Kotesovec, Apr 30 2017: (Start)
a(n) ~ c * d^n, where
d = 1/A347901 = 1.735662824530347425658260749719668530254652847290392754609934...
c = 0.31236332459674145306627970724066492149823012868471473538681348971946...
(End)