A285918 Number of ordered set partitions of [n] into three blocks such that equal-sized blocks are ordered with increasing least elements.
1, 18, 75, 420, 1218, 4242, 14563, 42930, 132528, 432960, 1250340, 3814629, 12073701, 35074482, 106044555, 331913202, 967193328, 2917846758, 9062084298, 26507831559, 79848170823, 246771097680, 723922691700, 2178960263415, 6709005218503, 19728686792637
Offset: 3
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..1000
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, i, p) option remember; series(`if`(n=0 or i=1, (p+n)!/n!*x^n, add(x^j*b(n-i*j, i-1, p+j)*combinat [multinomial](n, n-i*j, i$j)/j!^2, j=0..n/i)), x, 4) end: a:= n-> coeff(b(n$2, 0), x, 3): seq(a(n), n=3..30);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, p_] := b[n, i, p] = Series[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[x^j*b[n - i*j, i-1, p+j]*multinomial[n, Join[{n - i*j}, Table[i, j] ] ]/j!^2, {j, 0, n/i}]], {x, 0, 4}]; a[n_] := Coefficient[b[n, n, 0], x, 3]; Table[a[n], {n, 3, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)