A285919 Number of ordered set partitions of [n] into four blocks such that equal-sized blocks are ordered with increasing least elements.
1, 40, 350, 3080, 17129, 82488, 464650, 1901680, 8357426, 35701952, 159721016, 627687060, 2642405289, 10712590392, 45568675202, 178738923440, 736145997686, 2946913512648, 12311241803256, 48275516469180, 197284995875314, 786939537437440, 3254422571085400
Offset: 4
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..700
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, i, p) option remember; series(`if`(n=0 or i=1, (p+n)!/n!*x^n, add(x^j*b(n-i*j, i-1, p+j)*combinat [multinomial](n, n-i*j, i$j)/j!^2, j=0..n/i)), x, 5) end: a:= n-> coeff(b(n$2, 0), x, 4): seq(a(n), n=4..30);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, p_] := b[n, i, p] = Series[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[x^j*b[n - i*j, i - 1, p + j]*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2, {j, 0, n/i}]], {x, 0, 5}]; a[n_] := Coefficient[b[n, n, 0], x, 4]; Table[a[n], {n, 4, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)