A285927 Expansion of (Product_{k>0} (1 - x^(3*k)) / (1 - x^k))^3 in powers of x.
1, 3, 9, 19, 42, 81, 155, 276, 486, 821, 1368, 2214, 3541, 5544, 8586, 13082, 19740, 29403, 43414, 63423, 91935, 132075, 188418, 266733, 375232, 524331, 728514, 1006216, 1382604, 1889739, 2570719, 3480420, 4691682, 6297102, 8418252, 11209347, 14870970
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Mohammed L. Nadji and Moussa Ahmia, Congruences for L-regular tripartitions for L in {2, 3}, Integers (2024) Vol. 24, Art. No. A86. See p. 2.
Crossrefs
Programs
-
Mathematica
nmax = 40; CoefficientList[Series[Product[((1 - x^(3*k)) / (1 - x^k))^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 30 2017 *)
Formula
a(0) = 1, a(n) = (3/n)*Sum_{k=1..n} A046913(k)*a(n-k) for n > 0.
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(7/4) * n^(3/4)). - Vaclav Kotesovec, Apr 30 2017