A285931 Number of primes q < p such that q^(p-1) == 1 (modulo p^2), where p = prime(n).
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Examples
For n = 70: prime(70) = 349 and there are two primes q < 349 such that q^(349-1) == 1 (modulo 349^2), namely 223 and 317, so a(70) = 2.
Links
- M. J. Mossinghoff, Wieferich pairs and Barker sequences, Designs, Codes and Cryptography, Vol. 53, No. 3 (2009), 149-163.
Programs
-
Mathematica
f[n_] := Block[{c = 0, p = Prime@ n, q = 2}, While[q < p, If[ PowerMod[q, p - 1, p^2] == 1, c++]; q = NextPrime@q]; c]; Array[f, 105] (* Robert G. Wilson v, May 10 2017 *)
-
PARI
a(n) = my(p=prime(n), i=0); forprime(q=1, p-1, if(Mod(q, p^2)^(p-1)==1, i++)); i
Comments