cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285931 Number of primes q < p such that q^(p-1) == 1 (modulo p^2), where p = prime(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Felix Fröhlich, Apr 30 2017

Keywords

Comments

Pairs of prime numbers (q, p) satisfying the conditions in the definition are sometimes called "Wieferich prime pairs" (cf. Mossinghoff, 2009).
a(n) > 0 iff p is a term of A222184.
First occurrence of k beginning at 0: 1, 5, 70, 1618, 2702, etc. - Robert G. Wilson v, May 10 2017

Examples

			For n = 70: prime(70) = 349 and there are two primes q < 349 such that q^(349-1) == 1 (modulo 349^2), namely 223 and 317, so a(70) = 2.
		

Crossrefs

Cf. A222184, A222206 (records).

Programs

  • Mathematica
    f[n_] := Block[{c = 0, p = Prime@ n, q = 2}, While[q < p, If[ PowerMod[q, p - 1, p^2] == 1, c++]; q = NextPrime@q]; c]; Array[f, 105] (* Robert G. Wilson v, May 10 2017 *)
  • PARI
    a(n) = my(p=prime(n), i=0); forprime(q=1, p-1, if(Mod(q, p^2)^(p-1)==1, i++)); i