cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285935 Square array a(n, m) read by antidiagonals whose g.f. is 1 / ((1-x)^2 * (1-y)^2 - x*y).

Original entry on oeis.org

1, 2, 2, 3, 5, 3, 4, 10, 10, 4, 5, 18, 26, 18, 5, 6, 30, 58, 58, 30, 6, 7, 47, 116, 153, 116, 47, 7, 8, 70, 214, 354, 354, 214, 70, 8, 9, 100, 371, 746, 931, 746, 371, 100, 9, 10, 138, 612, 1464, 2204, 2204, 1464, 612, 138, 10, 11, 185, 969, 2714, 4816, 5794
Offset: 0

Views

Author

Michael Somos, Jun 14 2017

Keywords

Examples

			a(n,m) 0   1   2   3
----+--- --- --- ---
0   |  1   2   3   4
1   |  2   5  10  18
2   |  3  10  26  58
3   |  4  18  58 153
		

Crossrefs

Programs

  • Mathematica
    a[n_, m_] := SeriesCoefficient[1/((1-x)^2*(1-y)^2-x*y), {x, 0, n}, {y, 0, m}];
    Table[a[n-m, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jun 15 2017 *)
  • PARI
    {a(n, m) = if( n<0 || m<0, 0, polcoeff( polcoeff( -1/(x*y-sqr(1-x-y+x*y))*(1+x*O(x^n))*(1+y*O(y^k)), n), m))};

Formula

G.f. Sum_{n>=0, m>=0} a(n, m) * x^n * y^m = 1 / ((1-x)^2 * (1-y)^2 - x*y).
T(n, k) := a(n-k, k) where 0 <= k <= n.
a(n, m) = a(m, n) = T(n+m, n), T(n, 0) = a(n, 0) = n+1, if n>=0, m>=0.
Row sums are (-1)^(n+1) * A113067(n+1).
T(n, 1) = A177787(n+1).