cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285955 Numbers a(n) = T(b(n))*sqrt(T(b(n))+1), where T(b(n)) is the triangular number of b(n)= A000217(b(n)) and b(n)=A006451(n). Also a(n) = y solutions of the Bachet Mordell equation y^2=x^3+K, where x= T(b(n)) = A006454(n) and K = (T(b(n)))^2= A285985(n).

Original entry on oeis.org

0, 6, 60, 1320, 12144, 262080, 2405970, 51894744, 476378760, 10274921850, 94320640056, 2034382775040, 18675010652760, 402797515372356, 3697557790357470, 79751873665825680, 732097767490332144, 15790468188346521390, 144951660405354891060, 3126432949419110989944
Offset: 0

Views

Author

Vladimir Pletser, Apr 29 2017

Keywords

Comments

Numbers a(n) which are the products of the triangular number T(b(n)) and the square root of this triangular number plus one, sqrt(T(b(n))+1), where b(n) is the sequence A006451(n) of numbers n such that T(n)+1 is a square.
This sequence a(n) gives also the y solutions of the 3rd degree Diophantine Bachet-Mordell equation y^2=x^3+K, with x= T(b(n)) = A006454(n) and K = (T(b(n)))^2 = A285985(n), where T(b(n)) is the triangular number of b(n)= A006451(n).
Also: A000217(A006451(n)) * sqrt(A000217(A006451(n))+1).

Examples

			For n=2, b(n)=5, a(n)=60.
For n=5, b(n)=90, a(n)= 262080.
For n = 3, A006451(n) = 15. Therefore, A000217(A006451(n)) = A000217(15) = 120. This gives A000217(A006451(n)) * sqrt(A000217(A006451(n)) + 1) = 120 * sqrt(120 + 1) = 1320. - _David A. Corneth_, Apr 29 2017
		

References

  • V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.

Crossrefs

Programs

  • Maple
    restart: bm2:=-1: bm1:=0: bp1:=2: bp2:=5: print (‘0,0’,’1,6’,’2,60’); for n from 3 to 1000 do b:= 8*sqrt((bp1^2+bp1)/2+1)+bm2; a:=(b*(b+1)/2)* sqrt((b*(b+1)/2)+1); print(n,a); bm2:=bm1; bm1:=bp1; bp1:=bp2; bp2:=b; end do:

Formula

Since b(n) = 8*sqrt(T(b(n-2))+1)+ b(n-4) = 8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4), with b(-1)=-1, b(0)=0, b(1)=2, b(2)=5 (see A006451) and a(n) = T(b(n))*sqrt(T(b(n))+1) (this sequence), one has :
a(n) = ([8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)]*[ 8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)+1]/2)* sqrt(([8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)]*[ 8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)+1]/2)+1).
Empirical g.f.: 6*x*(1 - x)*(1 + 11*x + 27*x^2 + 11*x^3 + x^4) / ((1 + 14*x - x^2)*(1 + 2*x - x^2)*(1 - 2*x - x^2)*(1 - 14*x - x^2)). - Colin Barker, Apr 30 2017