A285985
Numbers a(n) = (T(b(n)))^2, where T(b(n)) is the triangular number of b(n)= A000217(b(n)) and b(n)=A006451(n). Also a(n) = parameters K of the Bachet Mordell equation y^2=x^3+K, where x= T(b(n)) = A006454(n) and y= T(b(n))* sqrt(T(b(n))+1) = A285955(n).
Original entry on oeis.org
0, 9, 225, 14400, 278784, 16769025, 322382025, 19356600384, 372051201600, 22337675375625, 429347532814209, 25777663981977600, 495466706924481600, 29747402099825117409, 571768151330225342025, 34328476252406392070400, 659819951198501829398784, 39615031848108328736769225, 761431651915943270106720225, 45715712424248689455481003584, 878691466491082103705616000000
Offset: 0
For n=2, b(n)=5, a(n)=225.
For n=5, b(n)=90, a(n)= 16769025.
For n = 3, A006451(n) = 15. Therefore, A000217(A006451(n)) = A000217(15) = 120 and (A000217(A006451(n)))^2 = (A000217(15))^2 = (120)^2 = 14400.
- V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.
-
restart: bm2:=-1: bm1:=0: bp1:=2: bp2:=5: print ('0,0','1,9','2,225'); for n from 3 to 1000 do b:= 8*sqrt((bp1^2+bp1)/2+1)+bm2; a:=(b*(b+1)/2)^2; print(n,a); bm2:=bm1; bm1:=bp1; bp1:=bp2; bp2:=b; end do:
A006454
Solution to a Diophantine equation: each term is a triangular number and each term + 1 is a square.
Original entry on oeis.org
0, 3, 15, 120, 528, 4095, 17955, 139128, 609960, 4726275, 20720703, 160554240, 703893960, 5454117903, 23911673955, 185279454480, 812293020528, 6294047334435, 27594051024015, 213812329916328, 937385441796000, 7263325169820735, 31843510970040003, 246739243443988680
Offset: 0
From _Raphie Frank_, Sep 28 2012: (Start)
35*(528 - 15) + 0 = 17955 = a(6),
35*(4095 - 120) + 3 = 139128 = a(7),
35*(17955 - 528) + 15 = 609960 = a(8),
35*(139128 - 4095) + 120 = 4726275 = a(9). (End)
From _Raphie Frank_, Feb 02 2013: (Start)
a(7) = 139128 and a(9) = 4726275.
a(9) = (2*(sqrt(8*a(7) + 1) - 1)/2 + 3*sqrt(a(7) + 1) + 1)^2 - 1 = (2*(sqrt(8*139128 + 1) - 1)/2 + 3*sqrt(139128 + 1) + 1)^2 - 1 = 4726275.
a(9) = 1/2*((3*(sqrt(8*a(7) + 1) - 1)/2 + 4*sqrt(a(7) + 1) + 1)^2 + (3*(sqrt(8*a(7) + 1) - 1)/2 + 4*sqrt(a(7) + 1) + 1)) = 1/2*((3*(sqrt(8*139128 + 1) - 1)/2 + 4*sqrt(139128 + 1) + 1)^2 + (3*(sqrt(8*139128 + 1) - 1)/2 + 4*sqrt(139128 + 1) + 1)) = 4726275. (End)
From _Vladimir Pletser_, Apr 30 2017: (Start)
For n=2, b(n)=5, a(n)=15
For n=5, b(n)=90, a(n)= 4095
For n = 3, A006451(n) = 15. Therefore, A000217(A006451(n)) = A000217(15) = 120. (End)
- Edward J. Barbeau, Pell's Equation, New York: Springer-Verlag, 2003, p. 17, Exercise 1.2.
- Allan J. Gottlieb, How four dogs meet in a field, and other problems, Technology Review, Jul/August 1973, pp. 73-74.
- Vladimir Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.
- Jeffrey Shallit, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vladimir Pletser, Table of n, a(n) for n = 0..1000 (first 60 terms from Vincenzo Librandi)
- M.A. Bennett and A. Ghadermarzi, Data on Mordell's curve.
- Michael A. Bennett and Amir Ghadermarzi, Mordell's equation : a classical approach, arXiv:1311.7077 [math.NT], 2013.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Jeffrey Shallit, Letter to N. J. A. Sloane, Oct. 1975.
- K. B. Subramaniam, Almost Square Triangular Numbers, The Fibonacci Quarterly, Vol. 37, No. 3 (1999), pp. 194-197.
- Eric Weisstein's World of Mathematics, Mordell Curve.
- Index entries for linear recurrences with constant coefficients, signature (1,34,-34,-1,1).
-
I:=[0,3,15,120,528,4095]; [n le 6 select I[n] else 35*(Self(n-2) - Self(n-4)) + Self(n-6): n in [1..30]]; // Vincenzo Librandi, Dec 21 2015
-
A006454:=-3*z*(1+4*z+z**2)/(z-1)/(z**2-6*z+1)/(z**2+6*z+1); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
restart: bm2:=-1: bm1:=0: bp1:=2: bp2:=5: print ('0,0','1,3','2,15'); for n from 3 to 1000 do b:= 8*sqrt((bp1^2+bp1)/2+1)+bm2; a:=b*(b+1)/2; print(n,a); bm2:=bm1; bm1:=bp1; bp1:=bp2; bp2:=b; end do: # Vladimir Pletser, Apr 30 2017
-
Clear[a]; a[0] = a[1] = 1; a[2] = 2; a[3] = 4; a[n_] := 6a[n - 2] - a[n - 4]; Array[a, 40]^2 - 1 (* Vladimir Joseph Stephan Orlovsky, Mar 03 2011 *)
LinearRecurrence[{1,34,-34,-1,1},{0,3,15,120,528},30] (* Harvey P. Dale, Feb 18 2023 *)
-
concat(0, Vec(3*x*(1 + 4*x + x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^30))) \\ Colin Barker, Apr 30 2017
More terms from Larry Reeves (larryr(AT)acm.org), Feb 07 2001
A285984
Numbers k such that 27*T(k)+1 is a square, where T(m) is the m-th triangular number A000217(m).
Original entry on oeis.org
0, 110, 374, 107184, 363264, 103968854, 352366190, 100849681680, 341794841520, 97824087261230, 331540643908694, 94889263793711904, 321594082796592144, 92042488055813286134, 311945928772050471470, 89281118524875093838560, 302587229314806160734240, 86602592926640785210117550
Offset: 0
k = 110 is a term because 27*(T(110) + 1) = 27 * (110*111/2 + 1) is a square. - _David A. Corneth_, May 02 2017
For n = 2, a(2) = 264*sqrt(27*(a(0)*(a(0)+1)/2)+1)+ a(-2) = 264*sqrt(27*(0*(0+1)/2)+1) + 110 = 374.
For n = 6, a(6) = 264*sqrt(27*(a(4)*(a(4)+1)/2)+1)+ a(2) = 264*sqrt(27*(363264*(363264+1)/2)+1) + 374 = 352366190.
- V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.
-
restart: am2:=110: am1:=0: a0:=0: ap1:=110: print ('0,0','1,110'); for n from 2 to 1000 do a:= 264*sqrt(27* (a0^2+a0)/2+1)+am2; print(n,a); am2:=am1; am1:=a0; a0:=ap1; ap1:=a; end do:
-
nxt[{a_,b_}]:={b,485*a+242+66*Sqrt[54a^2+54*a+4]}; NestList[nxt,{0,110},20][[All,1]] (* Harvey P. Dale, May 30 2018 *)
-
is(n) = issquare(27*binomial(n+1, 2)+1) \\ David A. Corneth, May 02 2017
A286035
a(n) = 3*T(A285984(n)), where T(m) is the m-th triangular number A000217(m).
Original entry on oeis.org
0, 18315, 210375, 17232775560, 197941645440, 16214284059063255, 186242898311223435, 15255987442587265956120, 175235570535035566127880, 14354328072739259079522561195, 164878797845087651200279041495, 13505958574968967401962031517525680, 155134131134672045268505114018663320
Offset: 0
For n = 2, b(n) = 374, a(n)= 210375.
For n = 3, b(n) = A285984(n) =107184. Therefore, a(n) = 3*T(b(n)) = 3*A000217(A285984(n)) = 3*A000217(107184) = 3*5744258520=17232775560.
- V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.
-
restart: bm2:=110: bm1:=0: b0:=0: bp1:=110: print ('0,0','1,18315'); for n from 2 to 1000 do b:= 264*sqrt(27* (b0^2+b0)/2+1)+bm2; a:=3*b*(b+1)/2;print(n,a); bm2:=bm1; bm1:=b0; b0:=bp1; bp1:=b; end do:
A286036
a(n) is the solution y to the Bachet Mordell equation y^2=x^3+K, with x = 3*T(b(n)) and K = (T(b(n)))^2, where T(b(n)) is the triangular number of b(n)= A285984(n).
Original entry on oeis.org
0, 2478630, 96492000, 2262209634604920, 88065491686677120, 2064651070850763887750940, 80374740223699340246041830, 1884345278651963087653858708518360, 73355621393690297028946986338029560, 1719785575058362227821108881720941727234290, 66949481579385248741161156467886515267346140
Offset: 0
For n = 2, b(n) = 374, a(n)= 96492000.
For n = 3, b(n) = A285984(n) =107184. Therefore, a(n) = T(b(n))* sqrt(27*T(b(n))+1) = A000217(A285984(n))* sqrt(27*A000217(A285984(n))+1) = A000217(107184)* sqrt(27*A000217(107184)+1) =5744258520* sqrt(27*5744258520 +1) = 2262209634604920.
- V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.
-
restart: bm2:=110: bm1:=0: b0:=0: bp1:=110: print ('0,0','1,2478630’); for n from 2 to 1000 do b:= 264*sqrt(27* (b0^2+b0)/2+1)+bm2; T:=b*(b+1)/2; a:= T*sqrt(27*T+1); print(n,a); bm2:=bm1; bm1:=b0; b0:=bp1; bp1:=b; end do:
A286037
a(n) = T(A285984(n))^2, where T(m) is the m-th triangular number A000217(m).
Original entry on oeis.org
0, 37271025, 4917515625, 32996505944592590400, 4353432777721630310400, 29211445283110309395256454577225, 3854046352373857001854365165911025, 25860572538708927496411840821477504196161600, 3411945020082158343071838489442339152945921600, 22894081602203374655543296113789919615194083223613314225
Offset: 0
For n = 2, b(n) = 374, a(n)= 4917515625.
For n = 3, b(n) = A285984(n) =107184. Therefore, a(n) = (T(b(n)))^2 = (A000217(A285984(n)))^2 = (A000217(107184))^2 = (5744258520)^2=32996505944592590400.
- V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.
-
restart: bm2:=110: bm1:=0: b0:=0: bp1:=110: print ('0,0','1,4917515625’); for n from 2 to 1000 do b:= 264*sqrt(27*(b0^2+b0)/2+1)+bm2; a:=(b*(b+1)/2)^2; print(n,a); bm2:=bm1; bm1:=b0; b0:=bp1; bp1:=b; end do:
Showing 1-6 of 6 results.
Comments