A285955
Numbers a(n) = T(b(n))*sqrt(T(b(n))+1), where T(b(n)) is the triangular number of b(n)= A000217(b(n)) and b(n)=A006451(n). Also a(n) = y solutions of the Bachet Mordell equation y^2=x^3+K, where x= T(b(n)) = A006454(n) and K = (T(b(n)))^2= A285985(n).
Original entry on oeis.org
0, 6, 60, 1320, 12144, 262080, 2405970, 51894744, 476378760, 10274921850, 94320640056, 2034382775040, 18675010652760, 402797515372356, 3697557790357470, 79751873665825680, 732097767490332144, 15790468188346521390, 144951660405354891060, 3126432949419110989944
Offset: 0
For n=2, b(n)=5, a(n)=60.
For n=5, b(n)=90, a(n)= 262080.
For n = 3, A006451(n) = 15. Therefore, A000217(A006451(n)) = A000217(15) = 120. This gives A000217(A006451(n)) * sqrt(A000217(A006451(n)) + 1) = 120 * sqrt(120 + 1) = 1320. - _David A. Corneth_, Apr 29 2017
- V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.
-
restart: bm2:=-1: bm1:=0: bp1:=2: bp2:=5: print (‘0,0’,’1,6’,’2,60’); for n from 3 to 1000 do b:= 8*sqrt((bp1^2+bp1)/2+1)+bm2; a:=(b*(b+1)/2)* sqrt((b*(b+1)/2)+1); print(n,a); bm2:=bm1; bm1:=bp1; bp1:=bp2; bp2:=b; end do:
Original entry on oeis.org
0, 0, 1, 3, 10, 15, 45, 120, 351, 528, 1540, 4095, 11935, 17955, 52326, 139128, 405450, 609960, 1777555, 4726275, 13773376, 20720703, 60384555, 160554240, 467889345, 703893960, 2051297326, 5454117903, 15894464365, 23911673955, 69683724540, 185279454480
Offset: 0
a(18) = 35*(52326 - 1540) + 45 = 1777555,
a(19) = 35*(139128 - 4095) + 120 = 4726275.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,34,0,-34,0,-1,0,1).
Cf. (sqrt(8a(2n+1) + 1) - 1)/2 =
A006451(n).
-
LinearRecurrence[{0,1,0,34,0,-34,0,-1,0,1},{0,0,1,3,10,15,45,120,351,528},40] (* Harvey P. Dale, Aug 04 2019 *)
-
concat([0,0], Vec(-x^2*(3*x^5+x^4+12*x^3+9*x^2+3*x+1)/((x-1)*(x+1)*(x^2-2*x-1)*(x^2+2*x-1)*(x^4+6*x^2+1)) + O(x^100))) \\ Colin Barker, Jun 23 2015
A285985
Numbers a(n) = (T(b(n)))^2, where T(b(n)) is the triangular number of b(n)= A000217(b(n)) and b(n)=A006451(n). Also a(n) = parameters K of the Bachet Mordell equation y^2=x^3+K, where x= T(b(n)) = A006454(n) and y= T(b(n))* sqrt(T(b(n))+1) = A285955(n).
Original entry on oeis.org
0, 9, 225, 14400, 278784, 16769025, 322382025, 19356600384, 372051201600, 22337675375625, 429347532814209, 25777663981977600, 495466706924481600, 29747402099825117409, 571768151330225342025, 34328476252406392070400, 659819951198501829398784, 39615031848108328736769225, 761431651915943270106720225, 45715712424248689455481003584, 878691466491082103705616000000
Offset: 0
For n=2, b(n)=5, a(n)=225.
For n=5, b(n)=90, a(n)= 16769025.
For n = 3, A006451(n) = 15. Therefore, A000217(A006451(n)) = A000217(15) = 120 and (A000217(A006451(n)))^2 = (A000217(15))^2 = (120)^2 = 14400.
- V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.
-
restart: bm2:=-1: bm1:=0: bp1:=2: bp2:=5: print ('0,0','1,9','2,225'); for n from 3 to 1000 do b:= 8*sqrt((bp1^2+bp1)/2+1)+bm2; a:=(b*(b+1)/2)^2; print(n,a); bm2:=bm1; bm1:=bp1; bp1:=bp2; bp2:=b; end do:
A006451
Numbers k such that k*(k+1)/2 + 1 is a square.
Original entry on oeis.org
0, 2, 5, 15, 32, 90, 189, 527, 1104, 3074, 6437, 17919, 37520, 104442, 218685, 608735, 1274592, 3547970, 7428869, 20679087, 43298624, 120526554, 252362877, 702480239, 1470878640, 4094354882, 8572908965, 23863649055, 49966575152
Offset: 0
- A. J. Gottlieb, How four dogs meet in a field, etc., Technology Review, Problem J/A2, Jul/August 1973 pp. 73-74; solution Jan 1974 (see link).
- Jeffrey Shallit, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- A. J. Gottlieb, How four dogs meet in a field, etc. (scanned copy)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- J. Shallit, Letter to N. J. A. Sloane, Oct. 1975
- Hermann Stamm-Wilbrandt, 4 interlaced bisections
- Index entries for linear recurrences with constant coefficients, signature (1,6,-6,-1,1).
-
a006451 n = a006451_list !! n
a006451_list = 0 : 2 : 5 : 15 : map (+ 2)
(zipWith (-) (map (* 6) (drop 2 a006451_list)) a006451_list)
-- Reinhard Zumkeller, Jan 10 2012
-
N:= 100: # to get a(0) to a(N)
A[0]:= 0: A[1]:= 2: A[2]:= 5: A[3]:= 15:
for n from 4 to N do A[n]:= 6*A[n-2] - A[n-4] + 2 od:
seq(A[n],n=0..N); # Robert Israel, Aug 26 2014
-
LinearRecurrence[{1,6,-6,-1,1},{0,2,5,15,32},30] (* Harvey P. Dale, Jul 17 2013 *)
Select[Range[10^6], IntegerQ@ Sqrt[# (# + 1)/2 + 1] &] (* Michael De Vlieger, Apr 25 2017 *)
-
for(n=1,10000,t=n*(n+1)/2+1;if(issquare(t), print1(n,", "))) \\ Joerg Arndt, Oct 10 2009
More terms from Larry Reeves (larryr(AT)acm.org), Feb 07 2001
Edited by
N. J. A. Sloane, Oct 24 2009, following discussions by several correspondents in the Sequence Fans Mailing List, Oct 10 2009
A006452
a(n) = 6*a(n-2) - a(n-4).
Original entry on oeis.org
1, 1, 2, 4, 11, 23, 64, 134, 373, 781, 2174, 4552, 12671, 26531, 73852, 154634, 430441, 901273, 2508794, 5253004, 14622323, 30616751, 85225144, 178447502, 496728541, 1040068261, 2895146102, 6061962064, 16874148071, 35331704123
Offset: 0
n = 3: 11^2 - 2*(2*4)^2 = -7 (see the Pell comment above);
(4*4)^2 - 2*11^2 = +14. - _Wolfdieter Lang_, Feb 26 2015
- A. J. Gottlieb, How four dogs meet in a field, etc., Technology Review, Jul/Aug 1973 pp. 73-74.
- Jeffrey Shallit, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- A. J. Gottlieb, How four dogs meet in a field, etc. (scanned copy)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- J. Shallit, Letter to N. J. A. Sloane, Oct. 1975
- Ahmet Tekcan and Alper Erdem, General Terms of All Almost Balancing Numbers of First and Second Type, arXiv:2211.08907 [math.NT], 2022.
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
-
I:=[1,1,2,4]; [n le 4 select I[n] else 6*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 09 2013
-
A006452:=-(z-1)*(z**2+3*z+1)/(z**2+2*z-1)/(z**2-2*z-1); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence except for one of the leading 1's
-
s=0;lst={1}; Do[s+=n;If[Sqrt[s+1]==Floor[Sqrt[s+1]],AppendTo[lst, Sqrt[s+1]]], {n,0,8!}]; lst (* Vladimir Joseph Stephan Orlovsky, Apr 02 2009 *)
a[0]=a[1]= 1; a[2]=2; a[3]=4; a[n_]:= 6*a[n-2] -a[n-4]; Array[a, 30, 0] (* Robert G. Wilson v, Jun 11 2010 *)
CoefficientList[Series[(1+x-4x^2-2x^3)/((1-2x-x^2)(1+2x-x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,6,0]^n*[1;1;2;4])[1,1] \\ Charles R Greathouse IV, May 10 2016
-
def A001333(n): return lucas_number2(n, 2, -1)/2
def A006452(n): return (A001333(n+1) + (-1)^n *A001333(n-2))/4
[A006452(n) for n in range(41)] # G. C. Greubel, Jan 22 2023
A245031
Numbers m such that 3*m+1 and 8*m+1 are both squares.
Original entry on oeis.org
0, 1, 21, 120, 2080, 11781, 203841, 1154440, 19974360, 113123361, 1957283461, 11084934960, 191793804840, 1086210502741, 18793835590881, 106437544333680, 1841604094101520, 10429793134197921, 180458407386358101, 1022013289607062600
Offset: 1
-
I:=[0,1,21,120,2080]; [n le 5 select I[n] else Self(n-1)+98*Self(n-2)-98*Self(n-3)-Self(n-4)+Self(n-5): n in [1..20]];
-
LinearRecurrence[{1, 98, -98, -1, 1}, {0, 1, 21, 120, 2080}, 20] (* or *) CoefficientList[Series[x (1 + 20 x + x^2)/((1 - x) (1 - 10 x + x^2) (1 + 10 x + x^2)), {x, 0, 20}], x]
-
a[1]:0$ a[2]:1$ a[3]:21$ a[4]:120$ a[5]:2080$ a[n]:=a[n-1]+98*a[n-2]-98*a[n-3]-a[n-4]+a[n-5]$ makelist(a[n], n, 1, 20);
-
a=vector(20); a[1]=0; a[2]=1; a[3]=21; a[4]=120; a[5]=2080; for(i=6, #a, a[i]=a[i-1]+98*a[i-2]-98*a[i-3]-a[i-4]+a[i-5]); a
Changed offset from 0 to 1 and adapted formulas by
Bruno Berselli, Mar 03 2016
A214838
Triangular numbers of the form k^2 + 2.
Original entry on oeis.org
3, 6, 66, 171, 2211, 5778, 75078, 196251, 2550411, 6666726, 86638866, 226472403, 2943171003, 7693394946, 99981175206, 261348955731, 3396416785971, 8878171099878, 115378189547778, 301596468440091, 3919462027838451, 10245401755863186, 133146330756959526, 348042063230908203
Offset: 1
2211 is in the sequence because 2211 = 47^2 + 2.
-
m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(-3*(x^4+x^3-14*x^2+x+1)/((x-1)*(x^2-6*x+1)*(x^2+6*x+1)))); // Bruno Berselli, Mar 08 2013
-
LinearRecurrence[{1, 34, -34, -1, 1}, {3, 6, 66, 171, 2211}, 25] (* Bruno Berselli, Mar 08 2013 *)
-
t[n]:=((5-2*sqrt(2))*(1+(-1)^n*sqrt(2))^(2*floor(n/2))+(5+2*sqrt(2))*(1-(-1)^n*sqrt(2))^(2*floor(n/2))-2)/4$
makelist(expand(t[n]*(t[n]+1)/2), n, 1, 25); /* Bruno Berselli, Mar 08 2013 */
-
for(n=1, 10^9, t=n*(n+1)/2; if(issquare(t-2), print1(t,", "))); \\ Joerg Arndt, Mar 08 2013
-
import math
for i in range(2, 1<<32):
t = i*(i+1)//2 - 2
sr = int(math.sqrt(t))
if sr*sr == t:
print(f'{sr:10} {i:10} {t+2}')
A285984
Numbers k such that 27*T(k)+1 is a square, where T(m) is the m-th triangular number A000217(m).
Original entry on oeis.org
0, 110, 374, 107184, 363264, 103968854, 352366190, 100849681680, 341794841520, 97824087261230, 331540643908694, 94889263793711904, 321594082796592144, 92042488055813286134, 311945928772050471470, 89281118524875093838560, 302587229314806160734240, 86602592926640785210117550
Offset: 0
k = 110 is a term because 27*(T(110) + 1) = 27 * (110*111/2 + 1) is a square. - _David A. Corneth_, May 02 2017
For n = 2, a(2) = 264*sqrt(27*(a(0)*(a(0)+1)/2)+1)+ a(-2) = 264*sqrt(27*(0*(0+1)/2)+1) + 110 = 374.
For n = 6, a(6) = 264*sqrt(27*(a(4)*(a(4)+1)/2)+1)+ a(2) = 264*sqrt(27*(363264*(363264+1)/2)+1) + 374 = 352366190.
- V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.
-
restart: am2:=110: am1:=0: a0:=0: ap1:=110: print ('0,0','1,110'); for n from 2 to 1000 do a:= 264*sqrt(27* (a0^2+a0)/2+1)+am2; print(n,a); am2:=am1; am1:=a0; a0:=ap1; ap1:=a; end do:
-
nxt[{a_,b_}]:={b,485*a+242+66*Sqrt[54a^2+54*a+4]}; NestList[nxt,{0,110},20][[All,1]] (* Harvey P. Dale, May 30 2018 *)
-
is(n) = issquare(27*binomial(n+1, 2)+1) \\ David A. Corneth, May 02 2017
A286035
a(n) = 3*T(A285984(n)), where T(m) is the m-th triangular number A000217(m).
Original entry on oeis.org
0, 18315, 210375, 17232775560, 197941645440, 16214284059063255, 186242898311223435, 15255987442587265956120, 175235570535035566127880, 14354328072739259079522561195, 164878797845087651200279041495, 13505958574968967401962031517525680, 155134131134672045268505114018663320
Offset: 0
For n = 2, b(n) = 374, a(n)= 210375.
For n = 3, b(n) = A285984(n) =107184. Therefore, a(n) = 3*T(b(n)) = 3*A000217(A285984(n)) = 3*A000217(107184) = 3*5744258520=17232775560.
- V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.
-
restart: bm2:=110: bm1:=0: b0:=0: bp1:=110: print ('0,0','1,18315'); for n from 2 to 1000 do b:= 264*sqrt(27* (b0^2+b0)/2+1)+bm2; a:=3*b*(b+1)/2;print(n,a); bm2:=bm1; bm1:=b0; b0:=bp1; bp1:=b; end do:
A286036
a(n) is the solution y to the Bachet Mordell equation y^2=x^3+K, with x = 3*T(b(n)) and K = (T(b(n)))^2, where T(b(n)) is the triangular number of b(n)= A285984(n).
Original entry on oeis.org
0, 2478630, 96492000, 2262209634604920, 88065491686677120, 2064651070850763887750940, 80374740223699340246041830, 1884345278651963087653858708518360, 73355621393690297028946986338029560, 1719785575058362227821108881720941727234290, 66949481579385248741161156467886515267346140
Offset: 0
For n = 2, b(n) = 374, a(n)= 96492000.
For n = 3, b(n) = A285984(n) =107184. Therefore, a(n) = T(b(n))* sqrt(27*T(b(n))+1) = A000217(A285984(n))* sqrt(27*A000217(A285984(n))+1) = A000217(107184)* sqrt(27*A000217(107184)+1) =5744258520* sqrt(27*5744258520 +1) = 2262209634604920.
- V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.
-
restart: bm2:=110: bm1:=0: b0:=0: bp1:=110: print ('0,0','1,2478630’); for n from 2 to 1000 do b:= 264*sqrt(27* (b0^2+b0)/2+1)+bm2; T:=b*(b+1)/2; a:= T*sqrt(27*T+1); print(n,a); bm2:=bm1; bm1:=b0; b0:=bp1; bp1:=b; end do:
Showing 1-10 of 14 results.
Comments