cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A077241 Combined Diophantine Chebyshev sequences A054488 and A077413.

Original entry on oeis.org

1, 2, 8, 13, 47, 76, 274, 443, 1597, 2582, 9308, 15049, 54251, 87712, 316198, 511223, 1842937, 2979626, 10741424, 17366533, 62605607, 101219572, 364892218, 589950899, 2126747701, 3438485822, 12395593988, 20040964033, 72246816227, 116807298376
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

-8*a(n)^2 + b(n)^2 = 17, with the companion sequence b(n)= A077242(n).
The number a > 0 belongs to the sequence A077241, if a^2 belongs to the sequence A034856. - Alzhekeyev Ascar M, Apr 27 2012
Numbers k such that k^2 + 2 is a triangular number (see A214838). - Alex Ratushnyak, Mar 07 2013

Examples

			8*a(2)^2 + 17 = 8*8^2+17 = 529 = 23^2 = A077242(2)^2.
		

Programs

  • Magma
    I:=[1,2,8,13]; [n le 4 select I[n] else 6*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Feb 18 2014
  • Mathematica
    LinearRecurrence[{0, 6, 0, -1}, {1, 2, 8, 13}, 30] (* Bruno Berselli, Mar 10 2013 *)
    CoefficientList[Series[(1 + x) (1 + x + x^2)/(1 - 6 x^2 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 18 2014 *)
  • Maxima
    makelist(expand((-1)^n*((4-5*sqrt(2))*(1-(-1)^n*sqrt(2))^(2*floor((n+1)/2))+(4+5*sqrt(2))*(1+(-1)^n*sqrt(2))^(2*floor((n+1)/2)))/8), n, 0, 30); /* Bruno Berselli, Mar 10 2013 */
    

Formula

a(2k) = A054488(k) and a(2k+1)= A077413(k) for k>=0.
G.f.: (1+x)*(1+x+x^2)/(1-6*x^2+x^4).
a(n) = (-1)^n*((4-5*sqrt(2))*(1-(-1)^n*sqrt(2))^(2*floor((n+1)/2))+(4+5*sqrt(2))*(1+(-1)^n*sqrt(2))^(2*floor((n+1)/2)))/8. [Bruno Berselli, Mar 10 2013]

A328791 Triangular numbers of the form k^2 + 3.

Original entry on oeis.org

3, 28, 903, 30628, 1040403, 35343028, 1200622503, 40785822028, 1385517326403, 47066803275628, 1598885794044903, 54315050194251028, 1845112820810490003, 62679520857362409028, 2129258596329511416903, 72332112754346025765628, 2457162575051435364614403
Offset: 1

Views

Author

Jon E. Schoenfield, Oct 27 2019

Keywords

Comments

There exist triangular numbers of the form k^2 + j for j=0 (A001110), j=1 (A164055), j=2 (A214838), and j=3 (this sequence), but not for j=4,7,8,13,16,18,... (A328792).

Crossrefs

Intersection of A000217 and A117950.
Cf. A276598 (the k's).

Programs

Formula

a(1) = 3, a(2) = 28; for n > 2, a(n) = 34*a(n-1) - a(n-2) - 46.

A328792 Numbers that are not the difference between any triangular number and the largest square that does not exceed it.

Original entry on oeis.org

4, 7, 8, 13, 16, 18, 22, 23, 25, 26, 31, 33, 34, 37, 38, 40, 43, 47, 48, 49, 52, 58, 59, 60, 61, 63, 64, 67, 68, 70, 73, 76, 79, 81, 83, 85, 86, 88, 92, 93, 94, 97, 98, 99, 102, 103, 106, 108, 112, 113, 114, 115, 118, 121, 123, 124, 125, 130, 133, 134, 138
Offset: 1

Views

Author

Jon E. Schoenfield, Oct 27 2019

Keywords

Examples

			For any triangular number t, let f(t) = t - floor(sqrt(t))^2.
0 is not a term: for each term t in A001110, f(t) = 0.
1 is not a term: for each term t > 1 in A164055, f(t) = 1.
2 is not a term: for each term t in A214838, f(t) = 2.
3 is not a term: for each term t > 3 in A328791, f(t) = 3.
4 is a term, however: there exists no triangular number t such that f(t) = 4.
		

Crossrefs

The complement of A230044.

A305292 Numbers k such that k-1 is a square and k+1 is a triangular number.

Original entry on oeis.org

2, 5, 65, 170, 2210, 5777, 75077, 196250, 2550410, 6666725, 86638865, 226472402, 2943171002, 7693394945, 99981175205, 261348955730, 3396416785970, 8878171099877, 115378189547777, 301596468440090, 3919462027838450, 10245401755863185, 133146330756959525
Offset: 1

Views

Author

Bruno Berselli, Jun 11 2018

Keywords

Comments

It is easy to prove that there are no numbers k such that k-1 is a triangular number and k+1 is a square.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 34, -34, -1, 1}, {2, 5, 65, 170, 2210}, 25]
  • PARI
    Vec(x*(2 + 3*x - 8*x^2 + 3*x^3 + 2*x^4)/((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^30)) \\ Colin Barker, Jun 14 2018

Formula

G.f.: x*(2 + 3*x - 8*x^2 + 3*x^3 + 2*x^4)/((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)).
a(n) = a(-n-1) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5).
a(n) = 35*a(n-2) - 35*a(n-4) + a(n-6) = 34*a(n-2) - a(n-4) + 2.
a(n) = (-2 + (13*sqrt(2) + 7*(-1)^n)*(1 + sqrt(2))^(2*n+1) - (13*sqrt(2) - 7* (-1)^n)*(1 - sqrt(2))^(2*n+1))/32.
a(n) = A214838(n) - 1.
a(n) = A077241(n-1)^2 + 1.
Showing 1-4 of 4 results.