A276598 Values of m such that m^2 + 3 is a triangular number (A000217).
0, 5, 30, 175, 1020, 5945, 34650, 201955, 1177080, 6860525, 39986070, 233055895, 1358349300, 7917039905, 46143890130, 268946300875, 1567533915120, 9136257189845, 53250009223950, 310363798153855, 1808932779699180, 10543232880041225, 61450464500548170
Offset: 1
Examples
5 is in the sequence because 5^2 + 3 = 28, which is a triangular number.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Soumeya M. Tebtoub, Hacène Belbachir, and László Németh, Integer sequences and ellipse chains inside a hyperbola, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18.
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
Crossrefs
Programs
-
Magma
[n le 2 select 5*(n-1) else 6*Self(n-1) - Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 15 2021
-
Mathematica
CoefficientList[Series[5*x/(1 - 6*x + x^2), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 07 2016 *) LinearRecurrence[{6,-1},{0,5},30] (* Harvey P. Dale, Apr 26 2019 *) (5/2)*Fibonacci[2*Range[30] -2, 2] (* G. C. Greubel, Sep 15 2021 *)
-
PARI
concat(0, Vec(5*x^2/(1-6*x+x^2) + O(x^30)))
-
PARI
a(n)=([0,1;-1,6]^n*[-5;0])[1,1] \\ Charles R Greathouse IV, Sep 07 2016
-
Sage
[(5/2)*lucas_number1(2*n-2, 2, -1) for n in (1..30)] # G. C. Greubel, Sep 15 2021
Formula
a(n) = 5*A001109(n-1).
a(n) = 5*( (3 - 2*sqrt(2))*(3 + 2*sqrt(2))^n - (3 + 2*sqrt(2))*(3 - 2*sqrt(2))^n )/(4*sqrt(2)).
a(n) = 6*a(n-1) - a(n-2) for n>2.
G.f.: 5*x^2 / (1-6*x+x^2).
a(n) = (5/2)*A000129(2*n-2). - G. C. Greubel, Sep 15 2021