cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A276598 Values of m such that m^2 + 3 is a triangular number (A000217).

Original entry on oeis.org

0, 5, 30, 175, 1020, 5945, 34650, 201955, 1177080, 6860525, 39986070, 233055895, 1358349300, 7917039905, 46143890130, 268946300875, 1567533915120, 9136257189845, 53250009223950, 310363798153855, 1808932779699180, 10543232880041225, 61450464500548170
Offset: 1

Views

Author

Colin Barker, Sep 07 2016

Keywords

Examples

			5 is in the sequence because 5^2 + 3 = 28, which is a triangular number.
		

Crossrefs

Cf. A001109 (k=0), A106328 (k=1), A077241 (k=2), A276599 (k=5), A276600 (k=6), A276601 (k=9), A276602 (k=10), where k is the value added to n^2.
Cf. A328791 (the resulting triangular numbers).

Programs

  • Magma
    [n le 2 select 5*(n-1) else 6*Self(n-1) - Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 15 2021
    
  • Mathematica
    CoefficientList[Series[5*x/(1 - 6*x + x^2), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
    LinearRecurrence[{6,-1},{0,5},30] (* Harvey P. Dale, Apr 26 2019 *)
    (5/2)*Fibonacci[2*Range[30] -2, 2] (* G. C. Greubel, Sep 15 2021 *)
  • PARI
    concat(0, Vec(5*x^2/(1-6*x+x^2) + O(x^30)))
    
  • PARI
    a(n)=([0,1;-1,6]^n*[-5;0])[1,1] \\ Charles R Greathouse IV, Sep 07 2016
    
  • Sage
    [(5/2)*lucas_number1(2*n-2, 2, -1) for n in (1..30)] # G. C. Greubel, Sep 15 2021

Formula

a(n) = 5*A001109(n-1).
a(n) = 5*( (3 - 2*sqrt(2))*(3 + 2*sqrt(2))^n - (3 + 2*sqrt(2))*(3 - 2*sqrt(2))^n )/(4*sqrt(2)).
a(n) = 6*a(n-1) - a(n-2) for n>2.
G.f.: 5*x^2 / (1-6*x+x^2).
a(n) = (5/2)*A000129(2*n-2). - G. C. Greubel, Sep 15 2021

A328792 Numbers that are not the difference between any triangular number and the largest square that does not exceed it.

Original entry on oeis.org

4, 7, 8, 13, 16, 18, 22, 23, 25, 26, 31, 33, 34, 37, 38, 40, 43, 47, 48, 49, 52, 58, 59, 60, 61, 63, 64, 67, 68, 70, 73, 76, 79, 81, 83, 85, 86, 88, 92, 93, 94, 97, 98, 99, 102, 103, 106, 108, 112, 113, 114, 115, 118, 121, 123, 124, 125, 130, 133, 134, 138
Offset: 1

Views

Author

Jon E. Schoenfield, Oct 27 2019

Keywords

Examples

			For any triangular number t, let f(t) = t - floor(sqrt(t))^2.
0 is not a term: for each term t in A001110, f(t) = 0.
1 is not a term: for each term t > 1 in A164055, f(t) = 1.
2 is not a term: for each term t in A214838, f(t) = 2.
3 is not a term: for each term t > 3 in A328791, f(t) = 3.
4 is a term, however: there exists no triangular number t such that f(t) = 4.
		

Crossrefs

The complement of A230044.
Showing 1-2 of 2 results.