A286000 A table of partitions into consecutive parts (see Comments lines for definition).
1, 2, 3, 2, 4, 1, 5, 3, 6, 2, 3, 7, 4, 2, 8, 3, 1, 9, 5, 4, 10, 4, 3, 4, 11, 6, 2, 3, 12, 5, 5, 2, 13, 7, 4, 1, 14, 6, 3, 5, 15, 8, 6, 4, 5, 16, 7, 5, 3, 4, 17, 9, 4, 2, 3, 18, 8, 7, 6, 2, 19, 10, 6, 5, 1, 20, 9, 5, 4, 6, 21, 11, 8, 3, 5, 6, 22, 10, 7, 7, 4, 5, 23, 12, 6, 6, 3, 4, 24, 11, 9, 5, 2, 3, 25, 13, 8, 4, 7, 2
Offset: 1
Examples
Table de partitions into consecutive parts (first 28 rows): 1; 2; 3, 2; 4, 1; 5, 3; 6, 2, 3; 7, 4, 2; 8, 3, 1; 9, 5, 4; 10, 4, 3, 4; 11, 6, 2, 3; 12, 5, 5, 2; 13, 7, 4, 1; 14, 6, 3, 5; 15, 8, 6, 4, 5; 16, 7, 5, 3, 4; 17, 9, 4, 2, 3; 18, 8, 7, 6, 2; 19, 10, 6, 5, 1; 20, 9, 5, 4, 6; 21, 11, 8, 3, 5, 6; 22, 10, 7, 7, 4, 5; 23, 12, 6, 6, 3, 4; 24, 11, 9, 5, 2, 3; 25, 13, 8, 4, 7, 2; 26, 12, 7, 8, 6, 1; 27, 14, 10, 7, 5, 7; 28, 13, 9, 6, 4, 6, 7; ... Figures A..G show the location (in the columns of the table) of the partitions of n = 1..7 (respectively) into consecutive parts: . ------------------------------------------------------------------------ Fig: A B C D E F G . ------------------------------------------------------------------------ . n: 1 2 3 4 5 6 7 Row ------------------------------------------------------------------------ 1 | [1];| 1; | 1; | 1; | 1; | 1; | 1; | 2 | | [2];| 2; | 2; | 2; | 2; | 2; | 3 | | | [3],[2];| 3; 2;| 3, 2; | 3, 2; | 3, 2; | 4 | | | 4 ,[1];| [4], 1;| 4, 1; | 4, 1; | 4, 1; | 5 | | | | | [5],[3]; | 5, 3; | 5, 3; | 6 | | | | | 6, [2], 3;| [6], 2, [3];| 6, 2, 3;| 7 | | | | | | 7, 4, [2];| [7],[4], 2;| 8 | | | | | | 8, 3, [1];| 8, [3], 1;| . ------------------------------------------------------------------------ Figure F: for n = 6 the partitions of 6 into consecutive parts are [6] and [3, 2, 1]. These partitions have 1 and 3 consecutive parts respectively. On the other hand we can find the mentioned partitions in the columns 1 and 3 of this table, starting at the row 6. . Figures H..K show the location (in the columns of the table) of the partitions of 8..11 (respectively) into consecutive parts: . -------------------------------------------------------------------- Fig: H I J K . -------------------------------------------------------------------- . n: 8 9 10 11 Row -------------------------------------------------------------------- 1 | 1; | 1; | 1; | 1; | 1 | 2; | 2; | 2; | 2; | 3 | 3, 2; | 3, 2; | 3, 2; | 3, 2; | 4 | 4, 1; | 4, 1; | 4, 1; | 4, 1; | 5 | 5, 3; | 5, 3; | 5, 3; | 5, 3; | 6 | 6, 2, 3;| 6, 2, 3; | 6, 2, 3; | 6, 2, 3; | 7 | 7, 4, 2;| 7, 4, 2; | 7, 4, 2; | 7, 4, 2; | 8 | [8], 3, 1;| 8, 3, 1; | 8, 3, 1; | 8, 3, 1; | 9 | | [9],[5],[4]; | 9, 5, 4; | 9, 5, 4; | 10 | | 10, [4],[3], 4;| [10], 4, 3, [4];| 10, 4, 3; 4;| 11 | | 11, 6, [2], 3;| 11, 6, 2; [3];| [11],[6], 2, 3;| 12 | | | 12, 5, 5, [2];| 12, [5], 5, 2;| 13 | | | 13, 7, 4, [1];| 13, 7, 4, 1;| . -------------------------------------------------------------------- Figure J: For n = 10 the partitions of 10 into consecutive parts are [10] and [4, 3, 2, 1]. These partitions have 1 and 4 consecutive parts respectively. On the other hand we can find the mentioned partitions in the columns 1 and 4 of this table, starting at the row 10. Illustration of initial terms arranged into the diagram of the triangle A237591: . _ . _|1| . _|2 _| . _|3 |2| . _|4 _|1| . _|5 |3 _| . _|6 _|2|3| . _|7 |4 |2| . _|8 _|3 _|1| . _|9 |5 |4 _| . _|10 _|4 |3|4| . _|11 |6 _|2|3| . _|12 _|5 |5 |2| . _|13 |7 |4 _|1| . _|14 _|6 _|3|5 _| . _|15 |8 |6 |4|5| . _|16 _|7 |5 |3|4| . _|17 |9 _|4 _|2|3| . _|18 _|8 |7 |6 |2| . _|19 |10 |6 |5 _|1| . _|20 _|9 _|5 |4|6 _| . _|21 |11 |8 _|3|5|6| . _|22 _|10 |7 |7 |4|5| . _|23 |12 _|6 |6 |3|4| . _|24 _|11 |9 |5 _|2|3| . _|25 |13 |8 _|4|7 |2| . _|26 _|12 _|7 |8 |6 _|1| . _|27 |14 |10 |7 |5|7 _| . |28 |13 |9 |6 |4|6|7| ... The number of horizontal line segments in the n-th row of the diagram equals A001227(n), the number of partitions of n into consecutive parts.
Comments